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More often than not, empirical studies are prone to incompleteness. For about
half a century, methods have been developed to address this issue in data
analysis. Older methods are relatively simple to use, but their validity is rightly
called into question. With increasing computational power and software tools
available, more flexible methods have come within reach. This chapter sketches
a general taxonomy (Rubin, 1976) within which incomplete data methods can
be placed. It then focuses on broadly valid methods that can be implemented
within the SAS environment, thereby commenting on their relative advantages
and disadvantages. All methods are illustrated using real data, and sufficiently
generic SAS code is offered. Both Gaussian and non-Gaussian outcomes are given
treatment. Apart from standard analysis tools, sensitivity analysis to examine
the impact of non-verifiable model assumptions is addressed.

7.1 Introduction

In a longitudinal study, each unit is measured on several occasions. It is not unusual
in practice for some sequences of measurements to terminate early for reasons
outside the control of the investigator, and any unit so affected is called a dropout.
It might, therefore, be necessary to accommodate dropout in the modeling process.

Early work on missing values was largely concerned with algorithmic and compu-
tational solutions to the induced lack of balance or deviations from the intended
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study design (Afifi and Elashoff, 1966; Hartley and Hocking, 1971). This was fol-
lowed by the development of general algorithms such as expectation-maximization
(EM) (Dempster, Laird, and Rubin, 1977), and data imputation and augmentation
procedures (Rubin 1987). These methods, combined with contemporary powerful
computing resources and the progressive implementation of advanced methods in
the SAS system, have addressed the problem in important ways. There is also the
very difficult and important question of assessing the impact of missing data on sub-
sequent statistical inference. This has received attention in particular in the setting
of clinical trials (Little et al., 2010). Several authors give practical advice regarding
the use of incomplete data methods (Mallinckrodt, 2013; O’Kelly and Ratitch, 2014),
while others focus on the broad methodological underpinnings (Molenberghs and
Kenward, 2007), or on specific methods, such as multiple imputation (MI; van
Buuren, 2012; Carpenter and Kenward, 2013). The edited volumes by Fitzmaurice
et al. (2009) and Molenberghs et al. (2015) present overviews of the longitudinal
data and incomplete data state of research, respectively.

When referring to the missing-value, or non-response, process, we will use ter-
minology of Little and Rubin (2014, Chapter 6). A non-response process is said to
be missing completely at random (MCAR) if missingness is independent of both
unobserved and observed data and missing at random (MAR) if, conditional on
the observed data, missingness is independent of the unobserved measurements. A
process that is neither MCAR nor MAR is termed non-random (MNAR). In the
context of likelihood or Bayesian inferences, when the parameters describing the
measurement process are functionally independent of the parameters describing the
missingness process, and provided some mild regularity conditions hold, MCAR
and MAR are ignorable, while a non-random process is non-ignorable. In the same
vein, MI is valid under MAR. The method offers an attractive Monte Carlo-based
alternative to direct likelihood and Bayesian inferences. For frequentist inferences,
only a strong MCAR assumption is a sufficient condition for ignorability. This is
relevant when discussing such methods as generalized estimating equations (GEE;
Liang and Zeger, 1986).

We will pay particular attention to these methods, because of their relevance and
the ease with which they can be implemented in SAS, thanks to the availability of
a suite of SAS procedures. This implies that historic methods such as complete case
analysis (CC) and last observation carried forward (LOCF) will be de-emphasized,
in line with Little et al. (2010). Indeed, valid inference can be obtained through a
likelihood-based analysis, a Bayesian analysis, or multiple imputation, without the
need for modeling the dropout or missingness process. Likelihood-based analyses
of longitudinal data can easily be conducted without additional data manipulation
using, for example, the SAS procedures MIXED, GLIMMIX, NLMIXED, or related
procedures (Verbeke and Molenberghs, 2000), without additional complication or
effort. Thanks to the availability and flexibility of the procedures MI and MIANA-
LYZE, multiple imputation is also rather straightforward to conduct. Furthermore,
whereas a proper GEE analysis (i.e., valid under MAR) requires substantial addi-
tional programming with PROC GENMOD, the newer GEE procedure has made
so-called weighted GEE (WGEE) particularly easy.

At the same time, we cannot avoid reflecting on the status of MNAR-based
approaches. In realistic settings, the reasons for missingness or dropout are varied
and hard to know with sufficient certainty. It is, therefore, difficult to fully justify
on a priori grounds the assumption of MAR. At first sight, this calls for a further
shift towards MNAR models. However, careful considerations have to be made, the
most important of which is that no modeling approach, whether MAR or MNAR,
can recover the lack of information that occurs due to incompleteness of the data.

First, under MAR, a standard analysis would follow, if we would be entirely sure
of the MAR nature of the mechanism. However, it is only rarely the case that such
an assumption is known to hold (Murray and Findlay, 1988). Nevertheless, ignorable
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analyses may provide reasonably stable results, even when the assumption of MAR
is violated, in the sense that such analyses constrain the behavior of the unseen data
to be similar to that of the observed data (Mallinckrodt et al., 2001ab). A discussion
of this phenomenon in the survey context can be found in Rubin, Stern, and Vehovar
(1995). These authors argue that, in well conducted experiments (some surveys and
many confirmatory clinical trials), the assumption of MAR is often to be regarded
as a realistic one. Second, and very important for confirmatory trials, an MAR
analysis can be specified a priori without additional work relative to a situation
with complete data. Third, while MNAR models are more general and explicitly
incorporate the dropout mechanism, the inferences they produce are typically highly
dependent on untestable and often implicit assumptions built in regarding the
distribution of the unobserved measurements given the observed ones. The quality
of the fit to the observed data need not reflect at all the appropriateness of the
implied structure governing the unobserved data. This point is irrespective of the
MNAR route taken, whether a parametric model of the type of Diggle and Kenward
(1994) is chosen, or a semi-parametric approach such as in Robins, Rotnitzky, and
Scharfstein (1998). Hence in any incomplete-data setting there cannot be anything
like a definitive analysis.

Thus, arguably, in the presence of MNAR missingness, a wholly satisfactory
analysis of the data is not feasible. In fact, modeling in this context often rests
on strong (untestable) assumptions and relatively little evidence from the data
themselves. Glynn, Laird, and Rubin (1986) indicated that this is typical for selection
models. It is somewhat less the case for pattern-mixture models (Little 1993, 1994;
Hogan and Laird 1997), although caution should be used (Thijs, Molenberghs, and
Verbeke, 2000). This awareness and the resulting skepticsm about fitting MNAR
models initiated the search for methods to investigate the results with respect to
model assumptions and for methods allowing to assess influences in the parameters
describing the measurement process, as well as the parameters describing the non-
random part of the dropout mechanism. Several authors have suggested various
types of sensitivity analyses to address this issue (Molenberghs, Kenward, and
Goetghebeur, 2001; Scharfstein, Rotnitzky, and Robins, 1999; Van Steen et al.,
2001; and Verbeke et al., 2001). Verbeke et al. (2001) and Thijs, Molenberghs,
and Verbeke (2000) developed a local influence-based approach for the detection
of subjects that strongly influence the conclusions. These authors focused on the
Diggle and Kenward (1994) model for continuous outcomes. Van Steen et al. (2001)
adapted these ideas to the model of Molenberghs, Kenward and Lesaffre (1997), for
monotone repeated ordinal data. Jansen et al. (2003) focused on the model family
proposed by Baker, Rosenberger, and DerSimonian (1992). Recently, considerable
research attention has been devoted to the use of pattern-mixture models, combined
with multiple imputation, as a viable route for sensitivity analysis (Carpenter and
Kenward, 2013; Carpenter, Roger, and Kenward, 2013). In summary, to explore
the impact of deviations from the MAR assumption on the conclusions, we should
ideally conduct a sensitivity analysis, within which MNAR models can play a major
role.

The rest of the chapter is organized as follows. The clinical trial that will be
used throughout the chapter is introduced in Section 7.2. The general datasetting is
introduced in Section 7.3, as well as a formal framework for incomplete longitudinal
data. A brief overview on the problems associated with simple methods is presented in
Section 7.4. In subsequent sections, key methods are examined: ignorable likelihood
(Section 7.5); ignorable Bayesian analysis (Section 7.6); generalized estimating
equations (Section 7.7); and multiple imputation (Section 7.8). A brief introduction
to sensitivity analysis is given in Section 7.9. Generally sensitivity analysis tools are
discussed in Section 7.10, while in Section 7.11 we focus on sensitivity analysis tools
that make use of multiple imputation.
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7.2 Case Study

The SAS code and data sets included in this chapter are available on the book’s
website at http://support.sas.com/publishing/authors/dmitrienko.html.

EXAMPLE:

TABLE 7.1

TABLE 7.2

Age-related macular degeneration trial

These data arise from a randomized multi-center clinical trial comparing an exper-
imental treatment (interferon-a) to a corresponding placebo in the treatment of
patients with age-related macular degeneration. In this book, we focus on the com-
parison between placebo and the highest dose (6 million units daily) of interferon-a
(Z). But the full results of this trial have been reported elsewhere (Pharmacological
Therapy for Macular Degeneration Study Group 1997). Patients with macular degen-
eration progressively lose vision. In the trial, the patients’ visual acuity was assessed
at different time points (4 weeks, 12 weeks, 24 weeks, and 52 weeks) through their
ability to read lines of letters on standardized vision charts. These charts display
lines of 5 letters of decreasing size, which the patient must read from top (largest
letters) to bottom (smallest letters). The raw patient’s visual acuity is the total
number of letters correctly read. In addition, we often refer to each line with at least
4 letters correctly read as a ‘‘line of vision.” The primary endpoint of the trial was
the loss of at least 3 lines of vision at 1 year, compared to their baseline performance
(a binary endpoint). The secondary endpoint of the trial was the visual acuity at 1
year (treated as a continuous endpoint). Buyse and Molenberghs (1998) examined
whether the patient’s performance at 6 months could be used as a surrogate for
their performance at 1 year with respect to the effect of interferon-c.. They looked
at whether the loss of 2 lines of vision at 6 months could be used as a surrogate
for the loss of at least 3 lines of vision at 1 year (Table 7.1). They also looked at
whether visual acuity at 6 months could be used as a surrogate for visual acuity at
1 year.

The Age-related Macular Degeneration Trial. Loss of at least 3 lines of vision at 1 year according
to loss of at least 2 lines of vision at 6 months and according to randomized treatment group
(placebo versus interferon-«).

12 months
Placebo Active
6 months 0 1 0 1
No event (0) 5 9 31 9
Event (1) 8 30 9 38

Table 7.2 shows the visual acuity (mean and standard error) by treatment group
at baseline, at 6 months, and at 1 year.

The Age-related Macular Degeneration Trial. Mean (standard error) of visual acuity at baseline, at
6 months and at 1 year according to randomized treatment group (placebo versus interferon-a).

Time point  Placebo Active Total

Baseline 55.3 (1.4) 54.6 (1.3) 55.0 (1.0)
6 months 49.3 (1.8) 45.5 (1.8) 47.5 (1.3)
1 year 444 (1.8) 39.1(1.9) 42.0 (1.3)

Visual acuity can be measured in several ways. First, we can record the number of
letters read. Alternatively, dichotomized versions (at least 3 lines of vision lost) can
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be used as well. Therefore, these data will be useful to illustrate methods for the joint
modeling of continuous and binary outcomes, with or without taking the longitudinal
nature into account. In addition, though there are 190 subjects with both month 6
and month 12 measurements available, the total number of longitudinal profiles is
240, but for only 188 of these have the four follow-up measurements been made.

Thus, indeed, 50 incomplete subjects could be considered for analysis as well.
Both intermittent missingness as well as dropout occurs. An overview is given in
Table 7.3.

TABLE 7.3 The Age-related Macular Degeneration Trial. Overview of missingness patterns and the
frequencies with which they occur. ‘O’ indicates observed and ‘M’ indicates missing.

Measurement occasion
4 wks 12 wks 24 wks 52 wks Number %

Completers
(0] (@) O (0] 188 78.33
Dropouts
(0] (0] O M 24 10.00
(0] (0] M M 8 3.33
(0] M M M 6 2.50
M M M M 6 2.50
Non-monotone missingness
(0] (0] M (0] 4 1.67
(0] M M (0] 1 0.42
M (@) O (0] 2 0.83
M (0] M M 1 0.42

Thus, 78.33% of the profiles are complete, while 18.33% exhibit monotone miss-
ingness. Out of the latter group, 2.5% or 6 subjects have no follow-up measurements.
The remaining 3.33%, representing 8 subjects, have intermittent missing values.
Thus, as in many of the examples seen already, dropout dominates intermediate
patterns as the source of missing data.

Age-related Macular CRF TRT VISUALO VISUAL4 VISUAL12 VISUAL24 VISUAL52 lesion
Degeneration Trial.
Partial printout. 1002 4 59 55 45 . . 3
1003 4 65 70 65 65 55 1
1006 1 40 40 37 17 . 4
1007 1 67 64 64 64 68 2
1010 4 70 . . . . 1
1110 4 59 53 52 53 42 3
1111 1 64 68 74 72 65 1
1112 1 39 37 43 37 37 3
1115 4 59 58 49 54 58 2
1803 1 49 51 71 71 1
1805 4 58 50 1

The original outcome (number of letters correctly read on a vision chart or its
difference with the baseline reading) can be considered continuous for practical
purposes. The derived dichotomous outcome (defined as number of letters read, has
increased versus decreased when compared with baseline) will be considered as well.
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Note that of the 52 subjects with incomplete follow-up, 8 exhibit a non-monotone
pattern. While this will not hamper direct-likelihood analyses, Bayesian analyses,
or multiple imputation, it is a challenge for weighted GEE and will need to be
addressed.

7.3 Data Setting and Methodology

Assume that for subject ¢ = 1,..., N in the study a sequence of responses, Y;; is
designed to be measured at occasions j = 1,...,n;. The outcomes are grouped into
a vector of random variables Y; = (Y;1,...,Y:,,). In addition, define a dropout

indicator D; for the occasion at which dropout occurs and make the convention
that D; = n; + 1 for a complete sequence. It is often handy to split the vector
Y'; into observed (Y7¢) and missing (Y'[") components, respectively. Dropout is a
particular case of monotone missingness. To have a monotone pattern, there has to
exist a permutation of the components of Y'; for all ¢ simultaneously, such that, if a
component is missing, then all later components are missing as well. For example,
consider a vector of length four: Y; = (Y;1, Y2, Vi3, Yis)', with all but the second
component Yo fully observed. Then the ordering (Y;1,Y;s, Y4, Yi2)' satisfies the
definition of monotone missingness. A counterexample is when, for every i, either
Y;1 or Y5 is observed. In that case, no monotone re-ordering is possible. For this
definition to be meaningful, we need to have a balanced design in the sense of a
common set of measurement occasions across all study subjects. Other patterns are
referred to as non-monotone or intermittent missingness.

In principle, we would like to consider the density of the full data f(y;,d;|0,v),
where the parameter vectors 8 and ) describe the measurement and missingness
processes, respectively. Covariates are assumed to be measured but, for notational
simplicity, suppressed from notation unless strictly needed.

The taxonomy, constructed by Rubin (1976), further developed in Little and
Rubin (1987, with later editions in 2002 and 2014) and informally sketched in
Section 7.1, is based on the factorization

where the first factor is the marginal density of the measurement process, and the
second one is the density of the missingness process, conditional on the outcomes.
Factorization (7.3.1) forms the basis of selection modeling as the second factor
corresponds to the (self-)selection of individuals into “‘observed” and ‘“‘missing”
groups. An alternative taxonomy can be built based on so-called pattern-mixture
models (Little, 1993, 1994). These are based on the factorization

f(yia di‘ea ¢) = f(yi‘dia e)f(dzhb) (732)

Indeed, (7.3.2) can be seen as a mixture of different populations, characterized by
the observed pattern of missingness.

In the selection modeling framework, let us first describe a measurement and
missingness model in turn, and then formally introduce and comment on ignorability.

7.3.1 Linear Mixed Models

Assume that we want to perform a longitudinal analysis of a continuous outcome.
We then often assume a linear mixed-effects model, sometimes with an additional
serial correlation:
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(Verbeke and Molenberghs, 2000) where Y'; is the n-dimensional response vector for
subject 4, 1 < i < N; N is the number of subjects; X; and Z; are (n; X p) and (n; X q)
known design matrices; 3 is the p dimensional vector containing the fixed effects; and
b; ~ N(0,G) is the g dimensional vector containing the random effects. The residual
components €; are decomposed as €; = €(1); + €y; in which &,); is a component
of serial correlation and e,; ~ N(O, 02I,,) is an extra component of measurement
error. Thus, serial correlation is captured by the realization of a Gaussian stochastic
process, €, which is assumed to follow a N(0,72H;) law. The serial covariance
matrix H; only depends on i through the number n of observations and through the
time points ¢;; at which measurements are taken. The structure of the matrix H; is
determined through the autocorrelation function p(tij —t;1). This function decreases
such that p(0) = 1 and p(+00) = 0. Further, G is a general (¢ x ¢) covariance matrix
with (4, j) element d;; = dj;. Finally, b1,...,bx, €)1, E@)n) E@)1s - - -, E@yn aL€
assumed to be independent. Inference is based on the marginal distribution of the
response Y ; which, after integrating over random effects, can be expressed as

Y, ~ N(Xi8,2:GZ +%). (7.3.4)

Here, ¥; = 021, + 72 H; is a (n x n) covariance matrix that groups the measurement
error and serial components. Further, we define V; = Z;GZ] + ¥, as the general
covariance matrix of Y’;.

The most commonly used SAS procedure to fit linear mixed models is PROC
MIXED. The fixed-effect structure is specified via the MODEL statement, while the
random-effects structure is entered using the RANDOM statement. If, in addition,
serial correlation is assumed to be present, the REPEATED statement can be added.
Also, several marginal models derived from a linear mixed-effects model can be
specified directly using the REPEATED statement. For details, we refer to Verbeke
and Molenberghs (2000).

7.3.2 Generalized Linear Mixed Models

Perhaps the most commonly encountered subject-specific (or random-effects) model
for arbitrary outcome data type is the generalized linear mixed model (GLMM). A
general framework for mixed-effects models can be expressed as follows.

It is assumed that, conditionally on g-dimensional random effects b; that are
drawn independently from N (0, G), the outcomes Y;; are independent with densities
of the form

fi(yijbi, B, 8) = exp {¢ ™ [yij0i; — ¥ (0:5)] + c(yij @) }

with n(ui;) = n(E(Yi;|bi)) = @};8 + 2};b; for a known link function 7(-), with x;;
and z;; p-dimensional and g-dimensional vectors of known covariate values; with
B a p-dimensional vector of unknown fixed regression coefficients; with ¢ a scale
parameter; and with 6;; the natural (or canonical) parameter. Further, let f(b;|G)
be the density of the N(0,G) distribution for the random effects b;.

Due to the above independence assumption, this model is often referred to as a
conditional independence model. This assumption is the basis of the implementation
in the NLMIXED procedure. Just as in the linear mixed model case, the model can
be extended with residual correlation, in addition to the one induced by the random
effects. Such an extension can be implemented in the SAS procedure GLIMMIX,
and its predecessor the GLIMMIX macro. It is relevant to realize that GLIMMIX
can be used without random effects as well, thus effectively producing a marginal
model, with estimates and standard errors similar to the ones obtained with GEE
(see Section 7.3.4).
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In general, unless a fully Bayesian approach is followed, inference is based on the
marginal model for Y'; which is obtained from integrating out the random effects.
The likelihood contribution of subject 7 then becomes

1(918.6.0) = [ T] o le1.8.0) 10116 ab,
j=1
from which the likelihood for B, D, and ¢ is derived as

N
L(B,G,¢) =[] fi(v:lB, G, )

=1
N n;

=H/Hmmma@mmww (7.35)
i=1 Y j=1

The key problem in maximizing the obtained likelihood is the presence of N integrals
over the g-dimensional random effects. In some special cases, these integrals can be
worked out analytically. However, since no analytic expressions are available for
these integrals, numerical approximations are needed. Here, we will focus on the
most frequently used methods to do so. In general, the numerical approximations
can be subdivided into those that are based on the approximation of the integrand;
those based on an approximation of the data; and those that are based on the
approximation of the integral itself. An extensive overview of a number of available
approximations can be found in Tuerlinckx et al. (2004), Pinheiro and Bates (2000),
and Skrondal and Rabe-Hesketh (2004). Finally, to simplify notation, it will be
assumed that natural link functions are used, but straightforward extensions can be
applied.

When integrands are approximated, the goal is to obtain a tractable integral such
that closed-form expressions can be obtained, making the numerical maximization
of the approximated likelihood feasible. Several methods have been proposed, but
basically all come down to Laplace-type approximations of the function to be
integrated (Tierney and Kadane 1986).

A second class of approaches is based on a decomposition of the data into the
mean and an appropriate error term, with a Taylor series expansion of the mean,
which is a nonlinear function of the linear predictor. All methods in this class
differ in the order of the Taylor approximation and/or the point around which the
approximation is expanded. More specifically, we consider the decomposition

Yij = pij +€i5 = h(xijB+ zijb;) + €45, (7.3.6)

in which A(+) equals the inverse link function n~1(-), and where the error terms have
the appropriate distribution with variance equal to Var(Y;;|b;) = ¢v(u;;) for v(-),
the usual variance function in the exponential family. Note that, with the natural
link function,

oh
v(pij) = %(mijﬂ + zi5b;).
Several approximations of the mean y;; in (7.3.6) can be considered. One possibility

is to derive a linear Taylor expansion of (7.3.6) around current estimates B and l/)\, of
the fixed effects and random effects, respectively. This will result in the expression

Yi=W, (Y, —f;) + XiB+ Zib; ~ X8+ Zb; + €, (7.3.7)

with ﬁ\/z equal to the diagonal matrix with diagonal entries equal to v(fi;;), and for
e} equal to Wi_lei, which still has mean zero. Note that (7.3.7) can be viewed as a
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linear mixed model for the pseudo data Y}, with fixed effects 3, random effects b;,
and error terms €.

This immediately yields an algorithm for fitting the original generalized linear
mixed model. Given starting values for the parameters 3, G, and ¢ in the marginal
likelihood, empirical Bayes estimates are calculated for b;, and pseudo data Y}
are computed. Then, the approximate linear mixed model (7.3.7) is fitted, yielding
updated estimates for 3, G, and ¢. These are then used to update the pseudo data,
and this whole scheme is iterated until convergence is reached.

The resulting estimates are called penalized quasi-likelihood estimates (PQL) in
the literature (e.g., Molenberghs and Verbeke, 2005), or pseudo-quasi-likelihood
in the documentation of the GLIMMIX procedure because they can be obtained
from optimizing a quasi-likelihood function that only involves first and second-order
conditional moments, augmented with a penalty term on the random effects. The
pseudo-likelihood terminology derives from the fact that the estimates are obtained
by (restricted) maximum likelihood of the pseudo-response or working variable.

An alternative approximation is very similar to the PQL method, but is based on
a linear Taylor expansion of the mean p;; in (7.3.6) around the current estimates

,f’)' for the fixed effects and around b; = 0 for the random effects. The resulting
estimates are called marginal quasi-likelihood estimates (MQL). We refer to Breslow
and Clayton (1993) and Wolfinger and O’Connell (1993) for more details. Since the
linearizations in the PQL and the MQL methods lead to linear mixed models, the
implementation of these procedures is often based on feeding updated pseudo data
into software for the fitting of linear mixed models. However, it should be emphasized
that the results from these fittings, which are often reported intermediately, should be
interpreted with great care. For example, reported (log)likelihood values correspond
to the assumed normal model for the pseudo data and should not be confused with
(log-)likelihood for the generalized linear mixed model for the actual data at hand.
Further, fitting of linear mixed models can be based on maximum likelihood (ML) as
well as restricted maximum likelihood (REML) estimation. Hence, within the PQL
and MQL frameworks, both methods can be used for the fitting of the linear model
to the pseudo data, yielding (slightly) different results. Finally, the quasi-likelihood
methods discussed here are very similar to the method of linearization for fitting
generalized estimating equations (GEE). The difference is that here, the correlation
between repeated measurements is modelled through the inclusion of random effects,
conditionally on which repeated measures are assumed independent. But in the
GEE approach, this association is modelled through a marginal working correlation
matrix.

Note that, when there are no random effects, both this method and GEE reduce to
a marginal model, the difference being in the way that the correlation parameters are
estimated. In both cases, it is possible to allow for misspecification of the association
structure by resorting to empirically corrected standard errors. When this is done,
the methods are valid under MCAR. In case we would have confidence in the
specified correlation structure, purely model-based inference can be conducted, and,
hence, the methods are valid when missing data are MAR.

A third method of numerical approximation is based on the approximation of the
integral itself. Especially in cases where the above two approximation methods fail,
this numerical integration turns out to be very useful. Of course, a wide toolkit of
numerical integration tools, available from the optimization literature, can be applied.
Several of those have been implemented in various software tools for generalized
linear mixed models. A general class of quadrature rules selects a set of abscissas
and constructs a weighted sum of function evaluations over those. In the particular
context of random-effects models, so-called adaptive quadrature rules can be used
(Pinheiro and Bates, 1995, 2000), where the numerical integration is centered around
the EB estimates of the random effects. The number of quadrature points is then
selected in terms of the desired accuracy.
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Figure 7.1
Graphical illustration
of Gaussian (left
window) and adaptive
Gaussian (right
window) quadrature of
order Q = 10. The
black triangles indicate
the position of the
quadrature points,
while the rectangles
indicate the
contribution of each
point to the integral.

To illustrate the main ideas, we consider Gaussian and adaptive Gaussian quadra-
ture, designed for the approximation of integrals of the form [ f(z)¢(z)dz, for an
known function f(z) and for ¢(z) the density of the (multivariate) standard normal
distribution. We will first standardize the random effects such that they get the
identity covariance matrix. Let &; be equal to §; = G~'/2b;. We then have that &;
is normally distributed with mean 0 and covariance I. The linear predictor then
becomes 6;; = x;;8 + z’ile/ 28;, so the variance components in G have been
moved to the linear predictor. The likelihood contribution for subject 7, expressed
in the original parameters, then equals

(918.6.0) = [ T] fistwsslos.8.0) £(51G) b (7.3.8)
j=1

Obviously, (7.3.8) is of the form [ f(z)¢(z)dz as required to apply (adaptive)
Gaussian quadrature.
In Gaussian quadrature, [ f(2)¢(z)dz is approximated by the weighted sum

Q

/f(z)qb(z)dz ~ D wef(zg).

=1

Q is the order of the approximation. The higher @, the more accurate the approxima-
tion will be. Further, the so-called nodes (or quadrature points) z, are solutions to
the Qth order Hermite polynomial, while the w, are well-chosen weights. The nodes
zq4 and weights w, are reported in tables. Alternatively, an algorithm is available for
calculating all z, and w, for any value @) (Press et al., 1992). In case of univariate
integration, the approximation consists of subdividing the integration region in
intervals, and approximating the surface under the integrand by the sum of surfaces
of the so-obtained approximating rectangles. An example is given in the left window
of Figure 7.1, for the case of Q = 10 quadrature points. A similar interpretation
is possible for the approximation of multivariate integrals. Note that the figure
immediately highlights one of the main disadvantages of (non-adaptive) Gaussian
quadrature, i.e., the fact that the quadrature points z, are chosen based on ¢(z),
independent of the function f(z) in the integrand. Depending on the support of

Gaussian Quadrature Adaptive Quadrature

flz)p(2)
f(z)p(2]
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f(2), the z, will or will not lie in the region of interest. Indeed, the quadrature
points are selected to perform well in case f(z)¢(z) approximately behaves like ¢(2),
i.e., like a standard normal density function. This will be the case, for example, if
f(2) is a polynomial of a sufficiently low order. In our applications, however, the
function f(z) will take the form of a density from the exponential family---hence, an
exponential function. It might then be helpful to re-scale and shift the quadrature
points such that more quadrature points lie in the region of interest. This is shown
in the right window of Figure 7.1, and is called adaptive Gaussian quadrature.

In general, the higher the order @, the better the approximation will be of the N
integrals in the likelihood. Typically, adaptive Gaussian quadrature needs (many)
fewer quadrature points than classical Gaussian quadrature. On the other hand,
adaptive Gaussian quadrature requires for each unit the numerical maximization
of a function of the form In(f(z)¢(z)) for the calculation of z. This implies that
adaptive Gaussian quadrature is much more time consuming.

Since fitting of GLMMs is based on maximum likelihood principles, inferences
for the parameters are readily obtained from classical maximum likelihood theory.

The Laplace method (Tierny and Kadane, 1986) has been designed to approximate
integrals of the form

I= / QO gp, (7.3.9)

where Q(b) is a known, unimodal, and bounded function of a g-dimensional variable

b. Let b be the value of b for which @ is maximized. We then have that the
second-order Taylor expansion of Q(b), which is of the form

Q(b) ~ Q(b) + 1(b ~5)'Q"(b)(b — b), (7.3.10)

2
for Q" (5) equal to the Hessian of @), i.e., the matrix of second-order derivative of
Q, evaluated at b. Replacing Q(b) in (7.3.9) by its approximation in (7.3.10), we

obtain

I ~ (27)4/?2 }Q”(E) Q).

’ —-1/2
Clearly, each integral in (7.3.5) is proportional to an integral of the form (7.3.9),
for functions Q(b) given by

Qb) = ¢~ [yij(@i;B + 2i;b) — (), 8 + 2i;b)] — %b’D‘lb,

Jj=1

such that Laplace’s method can be applied here. Note that the mode b of Q@ depends
on the unknown parameters 3, ¢, and D, such that in each iteration of the numerical
maximization of the likelihood, b will be re-calculated conditionally on the current
values for the estimates for these parameters.

The Laplace approximation is exact when Q(b) is a quadratic function of b, i.e.,
if the integrands in (7.3.5) are exactly equal to normal kernels. Interpreting these
integrands as unnormalized posterior distributions of the random effects b;, it is
known from the Bayesian literature (Gelman et al., 1995) that this will be the case
only in very special examples such as linear models, or provided that the number n;
of repeated measurements for all subjects are sufficiently large.

To fit GLMMs, the SAS procedures GLIMMIX and NLMIXED are obvious
choices. While a variety of GLMMs can be fitted using both procedures, there
are fundamental differences. GLIMMIX is restricted to generalized linear mixed
models, whereas NLMIXED allows for fully nonlinear (mixed) models. For this
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reason, GLIMMIX models are specified in a conventional, symbolic way (e.g., using
syntax of the form Y=X1 X2 X1*X2), whereas in NLMIXED the user programs
the mean and, where appropriate, variance functions, including fixed and random
effects. GLIMMIX allows for serial correlation, using a REPEATED statement.
Both procedures allow for multiple RANDOM statements. The integration options
in GLIMMIX include PQL, MQL, Laplace approximation, and adaptive Gaussian
quadrature. The corresponding options for NLMIXED are adaptive and non-adaptive
Gaussian quadrature. Both allow for a variety of updating algorithms and tuning
parameters. Because GLIMMIX is restricted to GLMM and, hence, can efficiently
make use of generalized linear model features (exponential family results, the use
of linear predictors, etc.), it is generally faster and stabler when both procedures
can be used. However, NLMIXED offers additional flexibility thanks to the open
programming abilities.

Using NLMIXED, the conditional distribution of the data, given the random
effects, is specified in the MODEL statement. Valid distributions are:

® normal(m,v): Normal with mean m and variance v,

® binary(p): Bernoulli with probability p,

® binomial(n, p): Binomial with count n and probability p,

® gamma(a,b): Gamma with shape a and scale b,

® negbin(n,p): Negative binomial with count n and probability p,
® poisson(m): Poisson with mean m,

® general(¢¢): General model with log-likelihood ¢¢.

The general structure is especially convenient when a non-convential model is
fitted. The RANDOM statement defines the random effects and their distribution.
The procedure requires the data to be ordered by subject.

The valid distributions for the GLIMMIX procedure are: beta, binary, binomial,
exponential, gamma, Gaussian (normal), geometric, inverse Gaussian, lognormal,
multinomial, negative binomial, Poisson, and central ¢t. Each one of them has a
default link function attached to them. Users have the ability to deviate from these,
but should check whether an alternative choice is coherent with the natural range
of the outcome type. For example, a probit link instead of a logit link is also a
sensible choice for binary outcomes, while a log link would usually be problematic
for interval-type data.

7.3.3 Likelihood-based Approaches

Consider, for the sake of argument, a continuous longitudinal outcome. Assume
that incompleteness is due to dropout only, and that the first measurement Y;;
is obtained for everyone. The model for the dropout process can be based on, for
example, a logistic regression for the probability of dropout at occasion j, given the
subject is still in the study. We denote this probability by g(hi;,v:;) in which h;;
is a vector containing all responses observed up to but not including occasion j, as
well as relevant covariates. We then assume that g(h;j,y;;) satisfies

logit[g(hij;, yij)] = logit [pr(D; = j|D; > j,y;)] = hij ¥ + wyij, (7.3.11)

i =1,...,N. When w equals zero, the posited dropout model is MAR, and all
parameters can be estimated easily using SAS since the measurement model for
which we use a linear mixed model and the dropout model, assumed to follow a
logistic regression, can then be fitted separately. If w # 0, the posited dropout
process is MNAR. Model (7.3.11) provides the building blocks for the dropout
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process f(d;|y;, ). As a cautionary note, we should not lose sight of the fact that
the true nature of the dropout mechanism cannot be determined based on observed
data alone (Molenberghs et al., 2008), pointing to the need for sensitvity analysis.

Rubin (1976) and Little and Rubin (2014) have shown that, under MAR and mild
regularity conditions (parameters 8 and 1) are functionally independent), likelihood-
based and Bayesian inferences are valid when the missing data mechanism is ignored
(see also Verbeke and Molenberghs, 2000). Practically speaking, the likelihood of
interest is then based upon the factor f(y?|@). This is called ignorability. We return
to this in more detail in Sections 7.5 and 7.6.

The practical implication is that a software module with likelihood estimation
facilities and with the ability to handle incompletely observed subjects manipulates
the correct likelihood, providing valid parameter estimates and likelihood ratio
values. A few cautionary remarks are in place. First, when at least part of the
scientific interest is directed towards the nonresponse process, obviously both
processes need to be considered. Still, under MAR, both processes can be modeled
and parameters estimated separately. Second, likelihood inference is often surrounded
with references to the sampling distribution (e.g., to construct precision estimators
and for statistical hypothesis tests; Kenward and Molenberghs, 1998). However, the
practical implication is that standard errors and associated tests, when based on the
observed rather than the expected information matrix and given that the parametric
assumptions are correct, are valid. Third, it may be hard to fully rule out the
operation of an MNAR mechanism. This point was brought up in the introduction
and will be discussed further in Sections 7.9--7.10. Fourth, a full longitudinal analysis
is necessary, even when interest lies, for example, in a comparison between the two
treatment groups at the last occasion. In the latter case, the fitted model can be used
as the basis for inference at the last occasion. A common criticism is that a model
needs to be considered. However, it should be noted that, in many clinical trial
settings, the repeated measures are balanced in the sense that a common (and often
limited) set of measurement times is considered for all subjects, allowing the a priori
specification of a saturated model (e.g., full group by time interaction model for the
fixed effects and unstructured variance-covariance matrix). Such an ignorable linear
mixed model specification is given in Mallinckrodt et al. (2001ab).

7.3.4 Generalized Estimating Equations

Overview

Two sometimes quoted issues with full likelihood approaches are the computational
complexity they entail and their vulnerability to model assumptions. When we are
mainly interested in first-order marginal mean parameters and pairwise association
parameters, i.e., second-order moments, a full likelihood procedure can be replaced
by quasi-likelihood methods (McCullagh and Nelder, 1989). In quasi-likelihood, the
mean response is expressed as a parametric function of covariates; and the variance
is assumed to be a function of the mean up to possibly unknown scale parameters.
Wedderburn (1974) first noted that likelihood and quasi-likelihood theories coincide
for exponential families and that the quasi-likelihood ‘‘estimating equations’ provide
consistent estimates of the regression parameters 3 in any generalized linear model,
even for choices of link and variance functions that do not correspond to exponential
families.

For clustered and repeated data, Liang and Zeger (1986) proposed so-called
generalized estimating equations (GEE or GEEL), which require only the correct
specification of the univariate marginal distributions provided we are willing to
adopt ‘‘working’’ assumptions about the association structure. They estimate the
parameters associated with the expected value of an individual’s vector of binary
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responses and phrase the working assumptions about the association between pairs
of outcomes in terms of marginal correlations. The method combines estimating
equations for the regression parameters 3 with moment-based estimating for the
correlation parameters entering the working assumptions.

Prentice (1988) extended their results to allow joint estimation of probabilities and
pairwise correlations. Lipsitz, Laird, and Harrington (1991) modified the estimating
equations of Prentice (1988) to allow modeling of the association through marginal
odds ratios rather than marginal correlations. When adopting GEE1 we do not use
information of the association structure to estimate the main effect parameters. As
a result, it can be shown that GEE1 yields consistent main effect estimators, even
when the association structure is misspecified. However, severe misspecification can
seriously affect the efficiency of the GEE1 estimators. In addition, GEE1 should be
avoided when some scientific interest is placed on the association parameters.

A second-order extension of these estimating equations (GEE2) that include
the marginal pairwise association as well has been studied by Liang, Zeger, and
Qagish (1992). They note that GEE2 is nearly fully efficient though bias might
occur in the estimation of the main effect parameters when the association structure
is misspecified.

Carey, Zeger, and Diggle (1993) proposed so-called alternating logistic regres-
sions(ALR), applicable to repeated binary data with logit link and the association
modeled using odds ratios. See also Molenberghs and Verbeke (2005). While they
allow for association-modeling, they are computationally simpler than GEE2.

Some Methodological Detail

After this short overview of the GEE approach, the GEE methodology will now be
explained a little further. We start by recalling the score equations, to be solved
when computing maximum likelihood estimates under a marginal normal model

N
S X{APRA) Ty, - XiB) =0, (7.3.12)

i=1

in which the marginal covariance matrix V; has been decomposed in the form
Vi = Ag / 2RiA}/ 2, with A; the diagonal matrix; with the marginal variances along
the main diagonal; and with R; equal to the marginal correlation matrix. Second,
the score equations to be solved when computing maximum likelihood estimates
under a marginal generalized linear model, assuming independence of the responses
within units (i.e., ignoring the repeated measures structure), are given by:

N

2 ggfmi/ "L AL i - ) =0, (7.3.13)
i=1

Note that (7.3.12) is of the form (7.3.13) but with the correlations between repeated
measures taken into account. A straightforward extension of (7.3.13) that accounts
for the correlation structure is

N
SB) = ggf(Aﬁ/QRiAi/Q)‘l(yi —p;) = 0, (7.3.14)
=1

which is obtained from replacing the identity matrix I,,, by a correlation matrix
R; = R;(a), often referred to as the working correlation matrix. Usually, the

marginal covariance matrix V; = A;/ 2R¢Ai /% contains a vector o of unknown
parameters---leading to V;(8, ) = Ag/z(,@)Ri(a)Agm(ﬂ)———which is replaced for
practical purposes by a consistent estimate.
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Assuming that the marginal mean p,; has been correctly specified as h(p;) = X8,
it can be shown that, under mild regularity conditions, the estimator ,@ obtained
from solving (7.3.14) is asymptotically normally distributed with mean 3 and with
covariance matrix

LIt (7.3.15)

where

Iy = (Zauz 1811/3)’ I = (Zau’z V IV ( )‘/z lggz>

In practice, Var(y;) in (7.3.15) is replaced by (y; — p;)(y; — p;)’, which is unbiased
on the sole condition that the mean was again correctly specified.

Note that valid inferences can now be obtained for the mean structure, only
assuming that the model assumptions with respect to the first-order moments are
correct. Note also that, although arising from a likelihood approach, the GEE
equations in (7.3.14) cannot be interpreted as score equations corresponding to some
full likelihood for the data vector y,.

Liang and Zeger (1986) proposed moment-based estimates for the working corre-
lation. To this end, first define deviations:

0 — Yij — Mij
g = 12
! U(ﬂz‘j)

and decompose the variance slightly more generally as above in the following way:

Vi = oA PRiA},

where ¢ is an overdispersion parameter.

Some of the more popular choices for the working correlations are independence
(Corr(Y;;,Yir) = 0, j # k); exchangeability (Corr(Y;;,Yir) = «, j # k); AR(1)
(Corr(Yi;,Yij4e) = afy t = 0,1,...,n; — j); and unstructured (Corr(Y”,Yik) =
aji, j # k). Typically, moment-based estimation methods are used to estimate
these parameters, as part of an integrated iterative estimation procedure (Aerts,
Geys, Molenberghs, and Ryan, 2002). The overdispersion parameter is approached
in a similar fashion. The standard iterative procedure to fit GEE, based on Liang
and Zeger (1986), is then as follows: (1) compute initial estimates for 3, using a
univariate GLM (i.e., assuming independence); (2) compute the quantities needed
in the estimating equation, such as means and variances; (3) compute Pearson
residuals e;;; (4) compute estimates for a; (5) compute R;(a); (6) compute an
estimate for ¢; (7) compute V;(8, ) = ¢A;/2(6)R¢(Q)A3/2(ﬁ); and (8) update the
estimate for 3:

0 ou;
(t+1) _ p@) Z I‘l’z vt K

Steps (2)--(8) are iterated until convergence.

In SAS, three procedures can be used for GEE. First, there is the GENMOD
procedure. In its basic form, it fits generalized linear models to univariate data.
Adding the REPEATED statement, repeated measures can be analyzed using GEE
or ALR, with a suite of working correlation structures available. As of SAS 9.4,
the GEE procedure is available. It is essentially a ‘“‘synonym” to GENMOD for
standard GEE, but its main attraction lies in the use of weighted GEE, for which
we refer to Section 7.7. As mentioned earlier, the GLIMMIX procedure can also be
used, provided no random effects are included, but merely ‘‘serial correlation,” using
the RANDOM _residual_ / syntax, combined with the use of empirically corrected
standard errors using the empirical option in the PROC GLIMMIX statement.

Z O Vi — H;)
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7.4 Simple Methods and MCAR

PROGRAM 7.1

We will briefly review a number of relatively simple methods that have been and
are still in extensive use. For a number of them, MCAR is required, while for others,
such as LOCF, the conditions for validity are wholly different. A detailed account
is given in Verbeke and Molenberghs (1997, 2000) and Molenberghs and Kenward
(2007). The case of clinical trials received specific attention in Molenberghs et al.
(2003). The focus will be on the complete case method, where data are removed, on
the one hand, and on imputation strategies and where data are filled in on the other
hand. Regarding imputation, we distinguish between single and multiple imputation.
In the first case, a single value is substituted for every ‘‘hole’” in the data set, and the
resulting data set is analyzed as if it represented the true complete data. Multiple
imputation properly acknowledges the uncertainty stemming from filling in missing
values rather than observing them (Rubin, 1987; Schafer, 1997), and is deferred to
Section 7.8. LOCF will be discussed within the context of imputation strategies,
although not every author classifies the method as belonging to the imputation
family.

7.4.1 Complete Case Analysis

A complete case analysis includes only those cases for analysis for which all n;
planned measurements were actually recorded. This method has obvious advantages.
It is very simple to describe, and, since the data structure is as would have resulted
from a complete experiment, standard statistical software can be used. Further,
since the complete estimation is done on the same subset of completers, there is a
common basis for inference, unlike with the available case methods.

Unfortunately, the method suffers from severe drawbacks. First, there is nearly
always a substantial loss of information. For example, suppose there are 20 mea-
surements, with 10% of missing data on each measurement. Suppose further that
missingness on the different measurements is independent. Then, the estimated
percentage of incomplete observations is as high as 87%. The impact on precision
and power is dramatic. Even though the reduction of the number of complete cases
will be less dramatic in realistic settings where the missingness indicators R; are
correlated, the effect just sketched will often undermine a lot of complete case
analyses. In addition, severe bias can result when the missingness mechanism is
MAR but not MCAR. Indeed, should an estimator be consistent in the complete
data problem, then the derived complete case analysis is consistent only if the
missingness process is MCAR. Unfortunately, the MCAR assumption is much more
restrictive than the MAR assumption.

Complete Case Analysis and SAS

The only step required to perform a complete case analysis is deletion of subjects
for which not all designed measurements have been obtained. When the data are
organized ‘‘horizontally,” i.e., one record per subject, this is particularly easy. With
“vertically” organized data, slightly more data manipulation is needed, and the SAS
macro, discussed below, can be used.

For example, for the age related macular degeneration trial, running the next
statement produces the complete case CC data set, for the continuous outcome
(‘diff’ is the difference of number of letters correctly read versus, baseline’):

Preparing the data for complete case analysis (continuous outcome)

%cc(data=armd155,id=subject,time=time,response=diff,out=armdcc2) ;
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PROGRAM 7.5
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and for the binary outcome (‘bindif’ is a discretization of ‘diff’, with 1 for nonnegative
values and 0 otherwise). See Program 7.2.

Preparing the data for complete case analysis (discrete outcome)
%cc(data=armdl1l,id=subject,time=time,response=bindif,out=armdcc);

Clearly, the CC macro requires four arguments. The data= argument is the data
set to be analyzed. If not specified, the most recent data set is used. The name of
the variable in the data set that contains the identification variable is specified by
id=, and time= specifies the variable indicating the time ordering within a subject.
The outcome variable is passed on by means of the response= argument, and the
name of the output data set, created with the macro, is defined through out=.

After performing this data preprocessing, a complete case analysis follows of any
type requested by the user, including, but not limited to, longitudinal analysis.

The macro requires records, corresponding to missing values, to be present in
the data set. Otherwise, it is assumed that a measurement occasion not included is
missing by design.

Upon creation of the new data set, the code for Model (7.5.16), to be presented
in Section 7.5 on ignorable likelihood, is given by Program 7.3.

Complete case analysis (continuous outcome)

proc mixed data=armdcc2 method=ml;

title ’CC - continuous’;

class time treat subject;

model diff = time treat*time / noint solution ddfm=kr;
repeated time / subject=subject type=un;

run;

When, in contrast, GEE of the form (7.7.28) is applied to the completers, the
following code can be used for standard GEE. See Program 7.4.

Complete case analysis (binary outcome, GEE, PROC GENMOD)

proc genmod data=armdcc;

title ’CC - GEE’;

class time treat subject;

model bindif = time treat*time / noint dist=binomial;

repeated subject=subject / withinsubject=time type=exch modelse;
run;

or see Program 7.5.

Complete case analysis (binary outcome, GEE, PROC GEE)

proc gee data=armdcc;

title ’CC - GEE’;

class time treat subject;

model bindif = time treat*time / noint dist=binomial;

repeated subject=subject / withinsubject=time type=exch modelse;
run;

Alternatively, for the linearization-based version of GEE, with empirically cor-
rected standard errors, we can use Program 7.6.
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PROGRAM 7.6

PROGRAM 7.7

PROGRAM 7.8

Complete case analysis (binary outcome, GEE, linearized version, PROC
GLIMMIX)

proc glimmix data=armdcc empirical;

title ’CC - GEE - linearized version - empirical’;

nloptions maxiter=50 technique=newrap;

class time treat subject;

model bindif = time treat*time / mnoint solution dist=binary;
random _residual_ / subject=subject type=cs;

run;

For the generalized linear mixed model (7.5.17), with numerical quadrature, the
following code is useful. See Program 7.7.

Complete case analysis (binary outcome, GLMM, PROC GLIMMIX)

proc glimmix data=armdcc method=gauss(q=20) ;

title ’CC - mixed - quadrature’;

nloptions maxiter=50 technique=newrap;

class time treat subject;

model bindif = time treat*time / noint solution dist=binary;
random intercept / subject=subject type=un g gcorr;

run;

With NLMIXED, we could use Program 7.8.

Complete case analysis (binary outcome, GLMM, PROC NLMIXED)

data help;

set armdcc;

timel=0; if time=1 then timel=1;
time2=0; if time=2 then time2=1;
time3=0; if time=3 then time3=1;
time4=0; if time=4 then timeéd=1;
run;

proc nlmixed data=help qpoints=20 maxiter=100 technique=newrap;

title ’CC - mixed - numerical integration’;

eta = betallx*timel+betal2*time2+betal3*time3+betald*timed
+b
+(beta2l*timel+beta22*time2+beta23*time3+beta24*timed)
*(2-treat);

p = exp(eta)/(1+exp(eta));

model bindif ~ binary(p);

random b ~ normal(0,tauxtau) subject=subject;

estimate ’tau”2’ tauxtau;

run;

Note that the DATA step in Program 7.8 merely creates dummy variables for
each of the four measurement times. The ESTIMATE statement allows for the easy
estimation of the random-effects variance and its standard error, because the model
parameter 7 is the corresponding standard deviation.

None of the above programs is specific to CC. Only the data preprocessing using
the %cc(...) macro defines it as CC.
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7.4.2 Simple Imputation Methods

An alternative way to obtain a data set on which complete data methods can be
used is filling in the missing values, instead of deleting subjects with incomplete
sequences. The principle of imputation is particularly easy. The observed values
are used to impute values for the missing observations. There are several ways to
use the observed information. First, we can use information on the same subject
(e.g., last observation carried forward). Second, information can be borrowed from
other subjects (e.g., mean imputation). Finally, both within and between subject
information can be used (e.g., conditional mean imputation, hot deck imputation).
Standard references are Little and Rubin (2014) and Rubin (1987). Imputation
strategies have historically been very popular in sample survey methods.

However, great care has to be taken with imputation strategies. Dempster and
Rubin (1983) write

The idea of imputation is both seductive and dangerous. It is seductive because it
can lull the user into the pleasurable state of believing that the data are complete
after all, and it is dangerous because it lumps together situations where the problem
is sufficiently minor that it can be legitimately handled in this way and situations
where standard estimators applied to the real and imputed data have substantial
biases.

For example, Little and Rubin (2014) show that the method could work for a linear
model with one fixed effect and one error term, but that it generally does not for
hierarchical models, split-plot designs, repeated measures (with a complicated error
structure), random-effects, and mixed-effects models. At the very least, different
imputations for different effects would be necessary.

The user of imputation strategies faces several dangers. First, the imputation
model could be wrong, and, hence, the point estimates would be biased. Second,
even for a correct imputation model, the uncertainty resulting from incompleteness
is masked. Indeed, even when we are reasonably sure about the mean value that
the unknown observation would have, the actual stochastic realization, depending
on both the mean structure as well as on the error distribution, is still unknown.

Last Observation Carried Forward

In this case, whenever a value is missing, the last observed value is substituted. It
is typically applied to settings where incompleteness is due to attrition.

Very strong and often unrealistic assumptions have to be made to ensure validity
of this method. First, either when we consider a longitudinal analysis or when the
scientific question is in terms of the last planned occasion, we have to believe that a
subjects’ measurement stays at the same level from the moment of dropout onwards
(or during the period they are unobserved in the case of intermittent missingness).
In a clinical trial setting, we might believe that the response profile changes as
soon as a patient goes off treatment and even that it would flatten. However, the
constant profile assumption is even stronger. Second, this method shares with other
single imputation methods that it overestimates the precision by treating imputed
and actually observed values on equal footing.

The situation, in which the scientific question is in terms of the last observed
measurement, is often considered to be the real motivation for LOCF. However in
some cases, the question, defined as such, has a very unrealistic and ad hoc flavor.
Clearly, measurements at (self-selected) dropout times are lumped together with
measurements made at the (investigator defined) end of the study.



338 Analysis of Clinical Trials Using SAS: A Practical Guide, Second Edition

PROGRAM 7.9

Last Observation Carried Forward and SAS

Similar steps as needed for a complete case analysis need to be performed when
LOCF is the goal. For a vertically organized data set, the following macro,
also written by Caroline Beunckens, can be used, in the continuous case. See
Program 7.9.

Preparing for LOCF analysis

%locf (data=armd155,id=subject,time=time,response=diff,out=armdlocf2);
or in the dichotomous case:

%locf (data=armdill,id=subject,time=time,response=bindif,out=armdlocf) ;

The arguments are exactly the same and have the same meaning as in the %cc(...)
macro of the previous section. Note that there is now a new response variable
created, named ‘locf’, which should be used in the corresponding analysis programs.
Thus, all SAS procedure MIXED, GENMOD, GEE, GLIMMIX, and NLMIXED
code of the previous section remains valid, upon replacing the response variables
‘diff’ and ‘bindiff’ by ‘loct” and, of course, by appropriately changing the names of
the data sets.

7.5 lIgnorable Likelihood (Direct Likelihood)

EXAMPLE:

As discussed in Section 7.3, likelihood based inference is valid whenever the mech-
anism is MAR and provided the technical condition holds that the parameters
describing the nonresponse mechanism are distinct from the measurement model
parameters (Little and Rubin, 2014). In other words, the missing data process should
be ignorable in the likelihood inference sense, since then the log-likelihood partitions
into two functionally independent component. As a consequence, a software module
for likelihood estimation can be used, provided it can handle incompletely observed
subjects. In other words, it should be able to handle subjects (or: blocks) of varying
lengths, which virtually all longitudinal procedures do. The ensuing parameter
estimates, standard errors, likelihood ratio values, etc. are valid.

In conclusion, a likelihood-based ignorable analysis (referred to for short as
ignorable likelihood or direct likelihood) is preferable since it uses all available
information, without the need to delete or to impute measurements or entire
subjects. It is theoretically justified whenever the missing data mechanism is MAR.
There is no statistical information distortion, given that observations are neither
removed (such as in complete case analysis) nor added (such as in single imputation).
There is no additional programming involved to implement an ignorable analysis
in the MIXED, GLIMMIX, or NLMIXED procedures, provided the order of the
measurements is correctly specified. This can be done either by supplying records
with missing data in the input data set or by properly indicating the order of the
measurement in the REPEATED and/or RANDOM statements.

7.5.1 Normally Distributed Outcomes

Age-related macular degeneration trial

We consider first a simple multivariate normal model, with unconstrained time
trend under placebo, an occasion-specific treatment effect, and a 4 x 4 unstructured
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variance-covariance matrix. Thus,
Yij = Bj1 + Bj2Ti + €15 (7.5.16)

where T; = 0 for placebo and T} = 1 for interferon-a. The direct-likelihood analysis
is contrasted with CC and LOCF, and parameter estimates (standard errors) for
the eight mean model parameters are presented in Table 7.4.

The Age Related Macular Degeneration Trial. Parameter estimates (standard errors) for the linear
mixed models, fitted to the continuous outcome ‘difference of the number of letters read versus
baseline’. CC, LOCF, and direct likelihood. p values are presented for treatment effect at each of
the four times separately, as well as for all four times jointly.

Effect Parameter CcC LOCF direct lik.
Parameter estimates (standard errors)
Intercept 4 Bi1 -3.24(0.77)  -3.48(0.77)  -3.48(0.77)
Intercept 12 Ba1 4.66(1.14)  -5.72(1.09)  -5.85(1.11)
Intercept 24 Ba1 -8.33(1.39)  -8.34(1.30)  -9.05(1.36)
Intercept 52 Ba “15.13(1.73)  -14.16(1.53) -16.21(1.67)
Treatm. eff. 4 Bra 2.32(1.05)  2.20(1.08)  2.20(1.08)
Treatm. eff. 12 Baa 2.35(1.55)  3.38(1.53)  3.51(1.55)
Treatm. eff. 24 Bs2 2.73(1.88)  2.41(1.83)  3.03(1.89)
Treatm. eff. 52 Bia 417(2.35)  3.43(2.15)  4.86(2.31)
p-values

Treatm. eff. 4 B2 0.0282 0.0432 0.0435
Treatm. eff. 12 Ba2 0.1312 0.0287 0.0246
Treatm. eff. 24 B32 0.1491 0.1891 0.1096
Treatm. eff. 52 Ba2 0.0772 0.1119 0.0366
Treatm. eff. (overall) 0.1914 0.1699 0.1234

While there is no overall treatment effect, and the p-values between the three
methods do not vary too much, the picture is different for the occasion-specific
treatment effects. At week 4, all three p-values indicate significance. While this
is the only significant effect when only the completers are analyzed, there is one
more significant effect with LOCF (week 12) and two more when direct likelihood is
employed (weeks 12 and 52). Once more, CC and LOCF miss important treatment
differences, the most important one being the one at week 52, the end of the study.

7.5.2 Non-Gaussian Outcomes

Age-related macular degeneration trial

Let us now turn to a random-intercept logistic model, similar in spirit to (7.7.28):
logit[P(Yij = 1|Tl, tj, bl)} = 6j1 + bz + ,BjQTi, (7517)

with notation as before and b; ~ N (0, 72). Both PQL and numerical integration are
used for model fitting. The results for this model are given in Table 7.5.

We observe the usual downward bias in the PQL versus numerical integra-
tion analysis, as well as the usual relationship between the marginal parameters
of Table 7.6 and their random-effects counterparts. Note also that the random-
intercepts variance is largest under LOCF, underscoring again that this method
artificially increases the association between measurements on the same subject. In
this case, in contrast to marginal models, LOCF and, in fact, also CC considerably
overestimate the treatment effect at certain times, by varying degrees ranging from
trivial to important, in particular at 4 and 24 weeks.
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TABLE 7.5 The Age-related Macular Degeneration Trial. Parameter estimates (standard errors) for the
random-intercept models: PQL and numerical-integration based fits on the CC and LOCF
population, and on the observed data (direct-likelihood).

Effect Parameter CC LOCF direct lik.
PQL
Int.4 B11 -1.19(0.31)  -1.05(0.28) -1.00(0.26)
Int.12 Bo1 -1.05(0.31)  -1.18(0.28)  -1.19(0.28)
Int.24 Bs1 -1.35(0.32)  -1.30(0.28) -1.26(0.29)
Int.52 B -1.97(0.36)  -1.89(0.31) -2.02(0.35)
Trt.4 Bi2 0.45(0.42)  0.24(0.39)  0.22(0.37)
Trt.12 Boz 0.58(0.41)  0.68(0.38)  0.71(0.37)
Trt.24 Bs2 0.55(0.42)  0.50(0.39)  0.49(0.39)
Trt.52 Bao 0.44(0.47)  0.39(0.42)  0.46(0.46)
R.L s.d. T 1.42(0.14)  1.53(0.13)  1.40(0.13)
R.I var. 2 2.03(0.39)  2.34(0.39)  1.95(0.35)
Numerical integration
Tnt.4 B 1.73(0.42) -1.63(0.39) -1.50(0.36)
Int.12 B -1.53(0.41)  -1.80(0.39) -1.73(0.37)
Int.24 Bs1 -1.93(0.43)  -1.96(0.40) -1.83(0.39)
Int.52 Bax -2.74(0.48) -2.76(0.44) -2.85(0.47)
Trt.4 Brz 0.64(0.54)  0.38(0.52)  0.34(0.48)
Trt.12 Boz 0.81(0.53)  0.98(0.52)  1.00(0.49)
Trt.24 Bsa 0.77(0.55)  0.74(0.52)  0.69(0.50)
Trt.52 Baz 0.60(0.59)  0.57(0.56)  0.64(0.58)
R.I s.d. T 2.19(0.27)  2.47(0.27)  2.20(0.25)
R.L var. 2 4.80(1.17)  6.08(1.32)  4.83(1.11)
TABLE 7.6 The Age-related Macular Degeneration Trial. Parameter estimates (model-based standard errors;

empirically corrected standard errors) for the marginal models: standard and linearization-based
GEE on the CC and LOCF population, and on the observed data. In the latter case, also WGEE is
used. All analyses based on PROC GENMOD.

Effect Par. CC LOCF Observed data
Unweighted WGEE
Standard GEE
Int.4 B -1.01(0.24;,0.24) -0.87(0.20;0.21) -0.87(0.21;0.21) -0.98(0.10;0.44)
Int.12  fBar -0.89(0.24;0.24) -0.97(0.21;0.21) -1.01(0.21;0.21)  -1.78(0.15;0.38)
Int.24  fBs1 -1.13(0.25;0.25) -1.05(0.21;0.21) -1.07(0.22;0.22) -1.11(0.15;0.33)
Int.52  fBa -1.64(0.29;0.29) -1.51(0.24;0.24) -1.71(0.29;0.29)  -1.72(0.25;0.39)
Tr.4 Bz 0.40(0.32;0.32)  0.22(0.28;0.28)  0.22(0.28;0.28)  0.80(0.15;0.67)
Tr12 oz 0.49(0.31;0.31)  0.55(0.28;0.28)  0.61(0.29;0.29)  1.87(0.19;0.61)
Tr.24 Bz 0.48(0.33;0.33)  0.42(0.29;0.29)  0.44(0.30;0.30)  0.73(0.20;0.52)
Tr.52  Biz  0.40(0.38;0.38)  0.34(0.32;0.32)  0.44(0.37;0.37)  0.74(0.31;0.52)
Corr. p 0.39 0.44 0.39 0.33
Linearization-based GEE
Int4 B -1.01(0.24;0.24) -0.87(0.21;0.21) -0.87(0.21;0.21)  -0.98(0.18;0.44)
Int.12  fBar -0.89(0.24;0.24) -0.97(0.21;0.21) -1.01(0.22;0.21)  -1.78(0.26;0.42)
Int.24 Bz -1.13(0.25;0.25) -1.05(0.21;0.21) -1.07(0.23;0.22)  -1.19(0.25;0.38)
t.52 B -1.64(0.29;0.29) -1.51(0.24;0.24) -1.71(0.29;0.29) -1.81(0.39;0.48)
Tr.4 Bz 0.40(0.32;0.32)  0.22(0.28;0.28)  0.22(0.29;0.29)  0.80(0.26;0.67)
Tr.12 oz 0.49(0.31;0.31)  0.55(0.28;0.28)  0.61(0.28;0.29)  1.85(0.32;0.64)
Tr.24  fs2  0.48(0.33;0.33)  0.42(0.29;0.29)  0.44(0.30;0.30)  0.98(0.33;0.60)
Tr.52  Baz  0.40(0.38;0.38)  0.34(0.32;0.32)  0.44(0.37;0.37)  0.97(0.49;0.65)
o2 0.62 0.57 0.62 1.29
T2 0.39 0.44 0.39 1.85
Corr. p 0.39 0.44 0.39 0.59
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7.5.3 Direct Likelihood and SAS

In contrast to CC and LOCF, no extra data processing is necessary when a direct
likelihood analysis is envisaged, provided the software tool used for analysis can
handle measurement sequences of unequal length. This is the case for virtually all
longitudinal data analysis tools, including the SAS procedures MIXED, NLMIXED,
and GLIMMIX.

One note of caution is relevant, however. When residual correlation structures are
used for which the order of the measurements within a sequence is important, such as
unstructured and AR(1), but not simple or compound symmetry, and intermittent
missingness occurs, care has to be taken to ensure that the design order within the
sequence, and not the apparent order, is passed on. In the SAS procedure MIXED,
a statement such as

repeated / subject=subject type=un;

is fine when every subject has, say, four designed measurements. However, when
for a particular subject, the second measurement is missing, there is a risk that the
remaining measurements are considered the first, second, and third, rather than the
first, third, and fourth. Thus, it is sensible to replace the above statement by:

repeated time / subject=subject type=un;

For the GENMOD and GEE procedures, the option withinsubject=time of the
REPEATED statement can be used. Note that this produces GEE and not direct
likelihood. For the GLIMMIX procedure, there is no such feature. Evidently, we
can also avoid the problem by properly sorting the measurements within a subject
and at the same time ensuring that for missing values a record is included with, of
course, a missing value instead of the actual measurement.

In all cases, especially when GLIMMIX is used, the proper order is passed on
when a record is included, even for the missing measurements.

When the NLMIXED procedure is used, only random effects can be included. In
such a case, all relevant information is contained in the actual effects that define
the random effects structure. For example, the order is immaterial for a random
intercepts model, and, for a random slope in time, all information needed about
time is passed on, for example, by the RANDOM statement:

RANDOM intercept time / subject=subject type=un;

Thus, in conclusion, all code for likelihood-based analyses, listed in Sec-
tion 7.4.1 can be used, provided the original data sets (armd155.sas7bdat and
armd111.sas7bdat) are passed on, and not the derived ones.

We conclude that, with only a minimal amount of care, a direct likelihood analysis
is no more complex than the corresponding analysis on a set of data that is free of
missingness.

7.6 Direct Bayesian Analysis (Ignorable Bayesian Analysis)

As stated earlier, not only likelihood but also Bayesian analyses are ignorable
under MAR and appropriate regularity conditions. This means that, just like with
ignorable likelihood, an ignorable Bayesian analysis is as easy to carry out with
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PROGRAM 7.10

Selected direct
likelihood output

complete as well as incomplete data. To illustrate this, consider the following simple
linear mixed model for the diff outcome:

)/ij ~ N((/Bl + bli) + (/82 + bgi)tj + (Bg =+ bgz)T',

+ (Ba + bai) Tit;, Ug), (7.6.18)
b
Zz ~ N(0,G). (7.6.19)
bai

To allow comparison between ignorable likelihood and ignorable Bayesian analysis,
we first provide the ignorable likelihood code.

Direct likelihood

proc mixed data=m.armd13k method=ml nobound covtest;

title ’direct likelihood’;

class subject;

model diff = time treat treat*time / solution ddfm=kr;

random intercept time treat treat*time / subject=subject type=vc;
run;

Relevant output is:

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|
Intercept 4.5954 2.0798 316 2.21 0.0279
time -2.5089 1.0527 286 -2.38 0.0178
treat -1.5121 1.3584 383 -1.11 0.2664
timex*treat -0.7952 0.6731 350 -1.18 0.2383

Covariance Parameter Estimates

Standard Z
Cov Parm Subject Estimate Error Value Pr Z
Intercept subject 12.3563 12.9356 0.96 0.3395
time subject 14.3486 3.3803 4.24 <.0001
treat subject 5.1696 4.8308 1.07 0.2846
timex*treat subject -0.2543 1.1974 -0.21 0.8318
Residual 50.7478 3.3151 15.31 <.0001

Note that the variance component associated with the time by treatment interaction
is negative, though not significantly different from zero. In other words, we have
a model that allows a marginal but no hierarchical interpretation. This will be
different in the upcoming Bayesian analysis, where a hierarchical interpretation is
inherent in the model.

For Bayesian analysis purposes, we rewrite (7.6.18)--(7.6.19) as:

Yij ~ N(ﬂu + Poit; + B3:1; + Baility, 02)7 (7.6.20)
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Bri

g.=| % | ~nN@a)., (7.6.21)
Bsi
Bai

B ~ N(Bo, o), (7.6.22)

G ~ IWishart(p, S), (7.6.23)

0? ~ IGamma(a, 7). (7.6.24)

The corresponding program, incorporating choices for the hyperprior parameters,
is Program 7.11.

Direct Bayesian analysis

proc mcmc data=m.armd13k nmc=10000 outpost=m.armd131 seed=23 init=random;
title ’direct Bayes’;

array theta[4] betal beta2 beta3 beta4;

array theta_c[4];

array dmat[4,4];

array beta0O[4] (0 0 0 0);

array SigO[4,4] (1000 0 0 0 0 1000 0 O O O 1000 0 O O O 1000);
array S[4,4] (100 0 0 0 0 100 0 0 0 0 100 0 0 0 O 100);

parms theta_c dmat {10 0 0 0 0 10 0 0 0 0 10 0 0 O O 10} var_y;
prior theta_c ~ mvn(beta0,Sig0);

prior dmat ~ iwish(4,8S);

prior var_y ~ igamma(0.01,scale=0.01);

random theta™mvn(theta_c,dmat) subject=subject;
mu=betal+beta2*treat+beta3*time+betad*treat*time;

model diff~normal(mu,var=var_y);

run;

The corresponding output is below.

I
Posterior Summaries and Intervals

Standard

Parameter N Mean Deviation 95% HPD Interval

theta_c1 10000 4.3933 2.9525 -1.8276 8.5445
theta_c2 10000 -1.4268 1.9469 -4.4090 2.5441
theta_c3 10000 -2.2187 1.2372 -4.5489 0.0692
theta_c4 10000 -0.9799 0.8187 -2.5878 0.4703
dmati 10000 43.8501 25.5374 8.7026 97.8559
dmat?2 10000 -14.0943 16.7127 -53.0171 4.6373
dmat3 10000 -13.0795 17.2618 -52.0841 11.3516
dmat4 10000 5.1822 9.6912 -8.5062 28.9990
dmat5 10000 -14.0943 16.7127 -53.0171 4.6373
dmat6 10000 21.8172 12.0049 5.2413 48.3360
dmat7 10000 0.7602 11.0049 -15.7870 28.3676
dmat8 10000 -4.1026 5.9859 -18.0130 5.5606
dmat9 10000 -13.0795 17.2618 -52.0841 11.3516
dmat10 10000 0.7602 11.0049 -15.7870 28.3676
dmati11 10000 36.4025 19.3862 9.0475 76.2131
dmat12 10000 -14.9697 11.7158 -39.6488 -0.1558
dmat13 10000 5.1822 9.6912 -8.5062 28.9990
dmat14 10000 -4.1026 5.9859 -18.0130 5.5606
dmat15 10000 -14.9697 11.7158 -39.6488 -0.1558
dmat16 10000 12.6873 6.8567 3.9227 26.8400

var_y 10000 46.2681 3.0475 40.4443 52.2954
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We observe that the results are similar to those of the direct likelihood analysis, but
that there are differences as well. This is due to the effect of the prior distributions.
Another source of difference is the fact that the likelihood-based model does not
impose bounds on the components of GG, whereas the Bayesian model is intrinsically
hierarchical.

7.7 Weighted Generalized Estimating Equations

7.7.1 Concept

Generalized estimating equations (GEE), as discussed in Section 7.3.4, are appealing
to model repeated measures when the research questions are formulated in terms
of the marginal mean function, especially but not only when outcomes are of a
non-Gaussian type.

However, as Liang and Zeger (1986) pointed out, incomplete-data based infer-
ences with GEE are valid only under the strong assumption that the data are
missing completely at random (MCAR). To allow the data to be missing at random
(MAR), Robins, Rotnitzky, and Zhao (1995) proposed weighted estimating equations
(WGEE). In Section 7.8, we will also discuss the combination of GEE with multiple
imputation.

The idea is to weight each subject’s contribution to the GEE by the inverse
probability, either of being fully observed, or of being observed up to a certain time.
In line with Molenberghs et al. (2011), let 7; be the probability for subject i to be
completely observed, and 7 the probability for subject ¢ to drop out on occasion d;.
These can be written as

n; di—1
i = H(l — Pit), ™ = [H (1- piz)] “ Did; » (7.7.25)

(=2 =2

where p;y = P (Di =UD; >0,Y,5,X z‘Z) are the component probabilities of dropping
out at occasion ¢, given that the subject is still in the study, the covariate history
X,7, and the outcome history Y,7. In such a case, we can opt either for WGEE
based on the completers only:

N

R; Opy .,
UB) =) eV W) = o (7.7.26)
i=1 "

with El = 1 if a subject is fully observed and 0 otherwise, or, upon using (7.7.25),
for WGEE using all subjects:

N o
U(B) = 3 % S ) i~ ) = o (r.7.27)

i=1

Here the superscript ‘o’ indicates the portion corresponding to the observed data in
the corresponding matrix or vector. Of course, with (7.7.26), the incomplete subjects
also contribute through the model for the dropout probabilities ;.
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Age-related macular degeneration trial

Consider the binary outcome that indicates whether the number of letters correctly
read at a follow-up occasion is higher or lower than the corresponding number of
letters at baseline. A population averaged (or marginal model) is used. We compare
analyses performed on the completers only (CC), on the LOCF imputed data, as
well as on the observed data. In all cases, standard GEE and the linearization-
based version are considered. For the observed, partially incomplete data, GEE is
supplemented with WGEE.

The GEE analyses are reported in Table 7.6. In all cases, we use the logit link,
and the model takes the form:

logit[P(Yi; = 1|T3,t5)] = Bj1 + Bj2Ts, (7.7.28)

similar in spirit to (7.5.16). A working exchangeable correlation matrix is considered.
For the WGEE analysis, the following weight model is assumed:

logit[P(D; = j|D; > j)]
= Yo + Y1Yi j—1 + Yol + Y31 L1; + VY30 Lo; + Y34L3;

Farl(t; = 2) + a2l (t; = 3), (7.7.29)

with y; j—1 the binary outcome at the previous time ¢; j_1 = t;_1, Ly; = 1 if the
patient’s eye lesion is of level k =1,...,4 (since one dummy variable is redundant,
only three are used), and I(-) is the indicator function. Parameter estimates and
standard errors for the dropout model are given in Table 7.7. Intermittent missingness
will be ignored at this time. We return to this point in Section 7.8. Covariates of
importance are treatment assignment, the level of lesions at baseline (a four-point
categorical variable, for which three indicator variables are needed), and time at
which dropout occurs. For the latter covariates, there are three levels, since dropout
can occur at times 2, 3, or 4. Hence, two indicator variables are included. Finally,
the previous outcome does not have a significant impact, but will be kept in the
model nevertheless.

The Age-related Macular Degeneration Trial. Parameter estimates (standard errors) for a logistic
regression model to describe dropout.

Estimate (s.e.)

Effect Parameter =~GENMOD GEE

Intercept o 0.14 (0.49)  0.17 (0.56)
Previous outcome Uy 0.04 (0.38) -0.05 (0.38)
Treatment b -0.86 (0.37) -0.87 (0.37)
Lesion level 1 Y31 -1.85 (0.49) -1.82 (0.49)
Lesion level 2 P32 -1.91 (0.52) -1.88 (0.52)
Lesion level 3 P33 -2.80 (0.72) -2.79 (0.72)
Time 2 Y 175 (0.49)  -1.73 (0.49)
Time 3 bao 11.38 (0.44)  -1.36 (0.44)

Note: GENMOD is called after the Y, dropout macro is called. The GEE parameters
result from the MISSMODEL statement within the procedure.

From Table 7.6, it is clear that there is very little difference between the standard
GEE and linearization-based GEE results. This is undoubtedly the case for CC,
LOCF, and unweighted GEE on the observed data. For these three cases, also, the
model-based and empirically corrected standard errors agree extremely well, owing to
the unstructured nature of the full time by treatment mean structure. However, we
do observe differences in the WGEE analyses. Not only do the parameter estimates
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PROGRAM 7.12

PROGRAM 7.13

differ a little between the two GEE versions, but there is also a dramatic difference
between the model-based and empirically corrected standard errors. This is entirely
due to the weighting scheme. The weights were not calibrated to add up to the
total sample size, which is reflected in the model-based standard errors. In the
linearization-based case, part of the effect is captured as overdispersion. This can be
seen from adding the parameters ¢2 and 72. In all other analyses, the sum is close
to one, as it should be when there is no residual overdispersion, but, in the last
column, these add up to 3.14. Nevertheless, the two sets of empirically corrected
standard errors agree very closely, which is reassuring.

In spite of there being no strong evidence for MAR, the results between GEE and
WGEE differ in a nontrivial way. It is noteworthy that at 12 weeks, a treatment effect
is observed with WGEE, which is undetected when using the other marginal analyses.
This finding is confirmed to some extent by the subject-specific random-intercept
model, presented in the next section, when the data are used as observed.

When comparing parameter estimates across CC, LOCF, and observed data
analyses, it is clear that LOCF has the effect of artificially increasing the correlation
between measurements. The effect is mild in this case. The parameter estimates
of the observed-data GEE are close to the LOCF results for earlier time points
and close to CC for later time points. This is to be expected, as at the start of the
study the LOCF and observed populations are very similar, with the same holding
between CC and observed populations near the end of the study. Note also that
the treatment effect under LOCF, especially at 12 weeks and after 1 year, is biased
downward in comparison to the GEE analyses.

7.7.2 WGEE and SAS, Using PROC GENMOD

We will first discuss the steps to be taken when using the older SAS procedure
GENMOD. Afterwards, we will switch to the more recent and easier to use GEE
procedure.

A GENMOD program for the standard GEE analysis is Program 7.12.

Standard GEE

proc genmod data=armdwgee;

class time treat subject;

model bindif = time treat*time / noint dist=binomial;

repeated subject=subject / withinsubject=time type=exch modelse;
run;

Likewise, the linearization-based version can be used without any problem, using
Program 7.13:

Linearization-based GEE

proc glimmix data=armdwgee empirical;

nloptions maxiter=50 technique=newrap;

class time treat subject;

model bindif = time treat*time / mnoint solution dist=binary;
random _residual_ / subject=subject type=cs;

run;

Note that PROC GENMOD produces empirical as well as a model-based standard
errors simultaneously, because of the modelse option. In the GLIMMIX code, we
merely obtain the empirically corrected standard errors, because of the empirical
option. Upon omitting this option, the model-based standard errors are obtained.
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We now sketch the steps to be taken when conducting a weighted GEE analysis.
To compute the weights, we first have to fit the dropout model using, for example,
logistic regression. The outcome dropout is binary and indicates whether dropout
occurs at a given time from the start of the measurement sequence until the time
of dropout or the end of the sequence. Covariates in the model are the outcomes
at previous occasions (prev), supplemented with genuine covariate information.
The %dropout macro, constructed by Caroline Beunckens, is used to construct the
variables dropout and prev.

Likewise, once a logistic regression has been fitted, these need to be translated
into weights. These weights are defined at the individual measurement level and are
equal to the product of the probabilities of not dropping out up to the measurement
occasion. The last factor is either the probability of dropping out at that time
or continuing the study. This task can be performed with the %dropwgt macro.
The arguments are the same as in the Jdropout macro, except that now also the
predicted values from the logistic regression have to be passed on through the pred=
argument, and the dropout indicator is passed on through the dropout= argument.

Using these macros, Program 7.14 can be used to prepare for a WGEE analysis.

Preparing for WGEE (PROC GENMOD)
hdropout (data=armd111,id=subject,time=time,response=bindif ,out=armdhlp) ;

proc genmod data=armdhlp descending;

class trt prev lesion time;

model dropout = prev trt lesion time / pred dist=binomial;
ods output obstats=pred;

run;

data pred;

set pred;

keep observation pred;
run;

data armdhlp;
merge pred armdhlp;
run;

%hdropwgt (data=armdhlp,id=subject,time=time,pred=pred,
dropout=dropout,out=armdwgee) ;

To sum up, the dropout indicator and previous outcome variable are defined using
the %dropout macro, after an ordinary logistic regression is performed. Predicted
values are first saved and then merged with the original data. Finally, the predicted
values are translated into proper weights using the %dropwgt macro. Note that this
approach is restricted to subject-level weights.

After these preparatory steps, we need only include the weights through the
WEIGHT (or, equivalently, SCWGT) statement within the GENMOD procedure.
This statement identifies a variable in the input data set to be used as the exponential
family dispersion parameter weight for each observation. The exponential family
dispersion parameter is divided by the WEIGHT variable value for each observation.
Whereas the inclusion of the REPEATED statement turns a univariate exponential
family model into GEE, the addition of WEIGHT further switches to WGEE. In
other words, we merely need to add Program 7.15.

Additional statement for weighted generalized estimating equations

weight wi;
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PROGRAM 7.16

PROGRAM 7.17

Note that the use of the WEIGHT statement can also be used in the GLIMMIX
procedure, so implying that a weighted version of the linearization-based GEE
method is feasible.

7.7.3 WGEE and SAS, Using PROC GEE

The standard GEE analysis as presented in Program 7.12 can equivalently be
implemented using PROC GEE. Literally, all it takes is to replace ‘GENMOD’ by
‘GEE’. The main value of the procedure lies in the ease with which WGEE can be
conducted. The preparatory steps are limited to defining the additional variables,
needed in the weight model. In this case, this is the variable prevbindif, containing
the previous value of bindif and indicators for the second and third time point.

Preparing for WGEE (PROC GEE)

data help;

set armdwgee;

by subject;
prevbindif=lag(bindif) ;

if first.id then prevbindif=1;
time2=0;

if time=2 then time2=1;
time3=0;

if time=3 then time3=1;

run;

Upon completing this step, we merely need to add the MISSMODEL statement to
the PROC GEE code. There is no need to specify an outcome variable, because this
will always be the dropout indicator.

WGEE, Using PROC GEE

proc gee data=help;

class time treat subject lesion;

model bindif = time treat*time / noint dist=binomial;

repeated subject=subject / withinsubject=time type=exch corrw modelse;
missmodel prevbindif treat lesion time2 time3 / type=obslevel;

run;

Note that we also include type=obslevel as an option to the MISSMODEL state-
ment. It specifies that the weights need to be calculated at the level of the observation,
rather than at the level of the subject as a whole. The latter corresponds to the
type=sublevel option. Observation-level weights are the default. The estimates
for the weight model are presented in Table 7.7 (second column). Note that they are
similar but not identical to the ones obtained from the earlier analysis. The reason is
that in the GENMOD-based analysis, all usable information from the non-monotone
sequences is used to compute the weights, whereas in the PROC GEE analysis,
non-monotone subjects are removed entirely from analysis. This also explains the
small differences between the results presented in Tables 7.6 and 7.8. The Standard
GEE (WGEE) analysis in the former is comparable to the subject-level analysis in
the latter.

A very striking feature is the difference between observation- and subject-level
weighting in Table 7.8. Some standard errors are 50--100% larger when observation-
level weights are employed. In other words, such more refined weights overcome one
of the main issues with WGEE, i.e., that of reduced precision. To emphasize this,
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TABLE 7.8 The Age-related Macular Degeneration Trial. Parameter estimates (empirically corrected standard
errors) for WGEE using PROC GEE, with both observation-level weights (observation) and
subject-level weights (subject).

Weights

Effect Parameter observation subject

Int.4 B11 -0.95 (0.20) -0.98 (0.35)
Int.12 Bo1 -1.03 (0.22)  -1.77 (0.30)
Int.24 Ba1 -1.03 (0.23) -1.11 (0.29)
Int.52 B -1.52 (0.30) -1.72 (0.37)
Tr.4 B12 0.32 (0.28)  0.78 (0.56)
Tr.12 Baa 0.65 (0.29)  1.83 (0.47)
Tr.24 Bsa 0.39 (0.30)  0.71 (0.49)
Tr.52 Bz 0.30 (0.39)  0.72 (0.47)
Corr. p 0.38 0.33

the observation-level analysis produces standard errors in the order of magnitude of
unweighted GEE (Table 7.8).

7.7.4 Double Robustness

We finish the section on GEE by referring to more recent developments by Robins
and colleagues that are designed to improve the efficiency of WGEE, more generally
termed inverse probability weighting (IPW). For overviews, see Carpenter, Kenward,
and Vansteelandt (2006); Molenberghs and Kenward (2007); and Molenberghs et al.
(2015). Essentially, standard WGEE are supplemented with a second term, which
has expectation zero given the observed data, and is most often written in terms of
the predictive distribution of the unobserved outcomes given the observed ones. The
method is termed doubly robust because it leads to a consistent and asymptotically
normal estimator when either the model for the weights or the predictive model is
correctly specified, but not necessarily both. Currently, the methodology is not yet
available in standard procedures, although various user-defined implementations
exist. See, for example (at www.missingdata.org.uk.), Mallinckrodt and Lipkovich
(2016, Ch. 17), which presents SAS code for double robust estimation.

7.8 Multiple Imputation

Next to the methods already discussed, multiple imputation (MI) is an attractive
tool in the modeler’s kit. The method is ignorable under MAR. Extensions exist
for MNAR mechanisms. These are well suited for sensitivity analyses and will be
discussed in Section 7.11.

Multiple imputation (MI) was formally introduced by Rubin (1978). Rubin (1987)
provides a comprehensive early treatment. Several other sources, such as Rubin and
Schenker (1986); Little and Rubin (2014); Tanner and Wong (1987); Schafer (1997);
van Buuren (2012); Carpenter and Kenward (2013); and O’Kelly and Ratitch (2014),
offer easy-to-read descriptions of the technique.

The key MI idea is to replace each missing value with a set of M plausible values,
i.e., values “‘drawn’ from the distribution of our data, that represent the uncertainty
about the right value to impute. The imputed data sets are then analyzed by
using standard procedures for complete data and combining the results from these
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analyses. Drawing imputations can be done in a large variety of ways, and the most
commonly used of them will be discussed in what follows.

An evident question is when to use multiple imputation. This question is relevant
because, given the availability of such procedures as MIXED, GLIMMIX, NLMIXED,
MCMC, and related software tools, direct likelihood and direct Bayesian analyses
are within reach. Also WGEE has become relatively easy to use thanks to the GEE
procedures.

That said, we broadly see at least six settings where MI can be of use, without
limiting it to other uses. First, when there is a combination of missing covariates
and missing outcomes, multiple imputation comes in handy to either handle the
incomplete covariates, or the incomplete covariates and outcomes combined. In
the former case, a standard missing-data technique can be used on the incomplete
outcome data with completed covariates. In the latter one, any complete-data
technique can be used. Second, when several analyses are envisaged on the same
set of incomplete data, missingness can be handled using MI, after which the
various analyses can be undertaken. A simple example is when the same set of
incomplete data will be modeled using both GEE and GLMM. Third, when a
technique requires the missing data patterns to be monotone, MI can be used, either
as an alternative to the technique envisaged (e.g., no direct likelihood or WGEE but
rather a complete-data technique after MI), or to monotonize the incomplete data
(e.g., enabling WGEE). Fourth, MI is attractive when likelihood-based analyses turn
out to be difficult to implement, especially when we would like to use jointly several
outcomes (e.g., binary, continuous, and/or count outcomes). See also Mallinckrodt
and Lipkovich (2016, Sec. 15.4). Fifth, certain MI extensions are applicable when
MNAR-type analyses are considered, in particular in the context of sensitivity
analysis (see Section 7.11). Sixth, MI is useful when an analysis is to be conducted
based on a discretized version of an incompletely observed continuous outcome or
set of outcomes. We can then begin by imputing the original, continuous outcome,
followed by discretizing the so-obtained completed data sets.

Technically, MI involves three distinct steps:

Imputation step. The missing values are filled in M times to generate M complete
data sets.

Analysis step. The M complete data sets are analyzed by using standard proce-
dures.

Inference step. The results from the M analyses are combined for inference
purposes.

The SAS procedure MI creates multiple imputed data sets from incomplete p-
dimensional multivariate data. It uses methods that incorporate appropriate vari-
ability across the M imputations. Once the M complete data sets are analyzed by
using standard procedures, PROC MIANALYZE can be used to generate valid sta-
tistical inferences about these parameters by combining results for the M complete
data sets. Alternative versions exist to combine, for example, M p-values into a
single one. More details on SAS for MI are provided in Sections 7.8.5--7.8.6.

7.8.1 Theoretical Justification

Suppose we have a sample of N, i.i.d. n x 1 random vectors Y;. In a data set with
the number of measurements per subject n; variable, we can define n = max2 ; n;.
Our interest lies in estimating some parameter vector 8 of the distribution of Y;.
Multiple imputation fills in the missing data Y™ using the observed data Y °, several
times, and then the completed data are used to estimate 6.
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If we knew the distribution of Y; = (Y7?,Y["), with parameter vector 6, then
we could impute Y}" by drawing a value of Y from the conditional distribution

f(yi"lys, 0).

The objective of the imputation process is to sample from this true predictive
distribution. Since we do not know @, we must estimate it from the data, say 6,
and presumably use

Fylys.6)

to impute the missing data. Frequentists sometimes favor incorporating uncertainty
in @ in the multiple imputation scheme using bootstrap or other methods. However,
in Bayesian terms, 6 is a random variable, in which the posterior distribution is a
function of the data, so we must account for its uncertainty. The Bayesian approach
relies on integrating out @, which provides a more natural and unifying framework
for accounting for the uncertainty in 6. Thus, 6 is a random variable with mean
equal to the estimated 0 from the data. Given this distribution, using multiple
imputation, we first draw a random 6" from the distribution of €, and then put this
0™ in to draw a random Y}" from

f(yi"ys,0%).

The imputation algorithm is as follows:

1. Draw 6" from the distribution of 0.

2. Draw Y[** from f(y"|y?,0"). This can be done in a variety of ways, including
multivariate normal models, log-linear models, a combination thereof, Monte
Carlo Markov chain methods, so-called full conditional specification (FCS), etc.
(van Buuren, 2012; Carpenter and Kenward, 2013).

3. To estimate 3, we then calculate the estimate of the parameter of interest, and
its estimated variance, using the completed data, (Y°, Y™*):

B=B(Y)=BY*Y™)
and the within-imputation variance is U = Var(3).

4. Repeat steps 1, 2, and 3 a number of M times = Bm and U™, form=1,..., M.

Steps 1 and 2 constitute the Imputation Task. Step 3 is the Analysis Task.

7.8.2 Pooling Information

Of course, we want to combine the M inferences into a single one (the Inference
Task). In this section, we will discuss parameter and precision estimation.
With no missing data, suppose that inference about the parameter 3 is made by

(8- B) ~N(0,U).

The M within-imputation estimates for 3 are pooled to give the multiple imputation
estimate

B* _ Z%:l /ém

M

Further, we can make normal based inferences for 3 based upon

B-B8)~N(@O,V),
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where

is the average within-imputation variance, and

S (B" =B)B" B

B =
M-1

is the between-imputation variance (Rubin, 1987).

7.8.3 Hypothesis Testing

When MI is used, the asymptotic results and, hence, the x? reference distributions
do not only depend on the sample size N, but also on the number of imputations M.
Therefore, Li, Raghunathan, and Rubin (1991) propose the use of an F reference
distribution with appropriate degrees-of-freedom. To test the hypothesis Hy : 8 = 6,
they advocate the following method to calculate p-values:

p=P(Fy, > F),

where k is the length of the parameter vector 8, Fj, ., is an F' random variable with
k numerator and w denominator degrees of freedom, and

(0" —680)W1(6" - 6y)

F= k(1 +7) ’
w=4+ (1 —4) {1+(1_T27_1)F7
r= % <1+A1/[> tr(BW 1),
T=k(M—1).

Here, r is the average relative increase in variance due to nonresponse across the
components of 8. The limiting behavior of this F' variable is that if M — oo, then
the reference distribution of F' approaches an Fj », = x?/k distribution.

Clearly, this procedure is not only applicable when the full vector 8, but also
when one component, a sub-vector, or a set of linear contrasts, is the subject of
hypothesis testing. In case of a sub-vector, or as a special case one component, we
use the corresponding sub-matrices of B and W in the formulas. For a set of linear
contrasts L3, we should use the appropriately transformed covariance matrices:

W =LWL,B=LBL,andV = LVL'.

7.8.4 Efficiency

Multiple imputation is attractive because it can be highly efficient even for small
values of M. Historically, numbers as small as M = 5 were often advocated (Rubin,
1987, p. 114). Of course, efficiency depends on a variety of factors, such as the
amount of missingness, data type, and whether the inferential goal is estimation or
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hypothesis testing. It is prudent to use somewhat higher values. The current SAS
default is M = 25 (as of SAS/STAT 14.1; formerly M = 5 was the default). Users
are encouraged to conduct simple numerical sensitivity analyses, by varying the
number of imputations over a range of values, until a desired level of precision is
attained. Carpenter and Kenward (2013) offer guidelines in this respect.

7.8.5 Imputation Mechanisms

The method of choice to create the imputed data sets depends on the missing data
pattern and the type(s) of the outcome variables. Carpenter and Kenward (2013)
describe the most commonly available methods for univariate and multivariate
outcomes, as well as a number of methods developed for specific cases such as
time-to-event data, data with nonlinear relationships, multilevel models, etc.

A data set is said to have a monotone missing data pattern if, a missing outcome
Y;; implies that Y, £ > j are missing for the same individual ¢, perhaps after
permuting the columns of the data matrix with components Yj;.

The widest array of methods is available for monotone data. In the SAS procedure
MI, apart from the general MCMC and FCS statements, also the MONOTONE
statement can be used. Within these, several options, and hence methods, are
available.

For monotone missing data patterns, a parametric regression method can be used
that assumes multivariate normality, logistic regression, or a combination thereof.
When opting for this approach, a regression model is fitted for each variable with
missing values, with the previous variables as covariates. Based on the resulting
model, a new regression model is then fitted and is used to impute the missing
values for each variable (Rubin, 1987), in line with steps 1 and 2 in Section 7.8.1.
Since the data set has a monotone missing data pattern, the process can easily be
repeated sequentially for variables with missing values. To this end, the options
reg and logistic are available. In addition, for categorical data, a discriminant
analysis based method can be used, using the discrim option.

When the logistic option is used with the FCS or MONOTONE statements,
we can make use of the likelihood=augment sub-option. This tool is handy when
maximum likelihood estimates for logistic regression do not exist (or tend to infinity)
because of so-called quasi-complete separation. The methodology was developed by
White, Daniel, and Royston (2010).

Alternatively, we can rely on a nonparametric method that uses propensity scores,
by means of the propensity option. The propensity score is the conditional proba-
bility of assignment to a particular treatment given a vector of observed covariates
(Rosenbaum and Rubin, 1983). In the propensity score method, a propensity score
is generated for each variable with missing values to indicate the probability of
that observation being missing. The observations are then grouped based on these
propensity scores, and an approximate Bayesian bootstrap imputation (Rubin, 1987)
is applied to each group. The propensity score method uses only the covariate
information that is associated with whether the imputed variable values are missing.
It does not use correlations among repeated measures. It is effective for inferences
about the distributions of individual imputed variables, but it is not appropriate for
analyses involving relationships among variables.

Finally, for monotone data, the so-called predictive mean matching (PMM) is also
available, using the option regpmm. The method is similar to regression imputation,
except that the value imputed is not merely taken from the predictive distribution,
but rather from a pool of donors with value close to the predictive mean. In some
applications, simply the closest value is selected, while in others a random selection
still takes place (Heitjan and Litte, 1991; Carpenter and Kenward, 2013, p. 133).
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For arbitrary missing data patterns, and, hence, in particular for monotone
patterns as well, there are two main methods: multivariate modeling (also referred
to as joint modeling; Schafer 1997, Carpenter and Kenward 2013) and full conditional
specification (FCS). In SAS, the former is implemented using the MCMC statement,
while the latter has become available since SAS 9.4 by way of the FCS statement.

In statistical applications, MCMC is used to generate pseudo-random draws from
multidimensional and otherwise intractable probability distributions via Markov
chains. A Markov chain is a sequence of random variables in which the distribution
of each element depends on the value of the previous one(s). In the MCMC method,
we construct a Markov chain long enough for the distribution of the elements to
stabilize to a target distribution. This stationary distribution is the one of interest.
By repeatedly simulating steps of the chain, it simulates draws from the distribution
of interest.

In more detail, the MCMC method works as follows. We assume that the data are
from a multivariate normal distribution, N(u,X), say. We then proceed as follows.

1. In the first step, the initial step, we have to choose starting values, Y ; ~ p(®)
and 29 say. This can be done by computing a vector of means and a covariance
matrix from the complete data. These are used to estimate the prior distribution.
More precisely, this means that the parameters of the prior distributions for
means and variances of the multivariate normal distribution are estimated, using
the informative prior option.

2. The next step is called the imputation step: Values for missing data items
are simulated by randomly selecting a value from the available distribution of
values, i.e., the predictive distribution of missing values given the observed values.
Technically, the predictive distribution makes use of the result:

Y™y,
~ N (,U,Em) + E(mo)z(mm)fl (ygo) _ “EO)) ,E(mm) _ E(mo)z(mm)flz(mo)) )

3. In the posterior step, the posterior distribution of the mean and covariance
parameters is updated, by updating the parameters governing their distribution
(e.g., the inverted Wishart distribution for the variance-covariance matrix and the
normal distribution for the means). This is then followed by sampling from the
posterior distribution of mean and covariance parameters, based on the updated
parameters.

4. The previous two steps, i.e., the imputation and the posterior steps, are iter-
ated until the distribution is stationary. This means that the mean vector and
covariance matrix are unchanged as we iterate.

5. To conclude, we use the imputations from the final iteration to form a data set
that has no missing values.

The MCMC method is implemented in the SAS procedure MI via the MCMC
statement. While in principle the method applies to arbitrary data type, its SAS
implementation is restricted to multivariate normal data. If needed, the TRANS-
FORM statement can be used to transform clearly non-normal outcomes to (near)
normality. An important feature of the MCMC statement is that it can be used to
either impute all missing values or just enough to make non-monotonically missing
data patterns monotone. In the latter case, the ‘impute=monotone option has to be
used. It is important to note that this option is entirely different, syntactically and
semantically, from the MONOTONE statement discussed earlier:

¢ The MONOTONE statement takes monotone patterns as input and returns
completed data.
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® The MCMC statement with impute=monotone option also takes data with non-
monotone patterns as input and returns monotonized data.

The most recent addition to the MI procedure is FCS, through the FCS statement
(van Buuren et al., 1999; van Buuren, 2007, 2012; and Carpenter and Kenward,
2013, Sec. 3.3). The monotone regression method is easy, because every missing
value in a monotone sequence can be predicted by its predecessors. It is flexible in
that it can handle a combination of continuous and categorical outcomes. On the
other hand, many application data sets have non-monotone patterns, even though
they might not be the majority of the patterns. The method can best be viewed as
a modification of the monotone method. The outcomes are first ordered such that
the patterns are as close to monotone as possible. As an initial step, the missing
values are imputed by drawing with replacement from the observed values of each
variable. Then a number of cycles are run, each of which consists of two steps:

® A regression of the observed part of the jth variable, Y;, on the remaining
variables is conducted. In this regression, missing values are replaced by the
current value of the imputations.

® Given the result of these regressions, and using the same algorithm as with
regression imputation, new imputations for the missing values in Y'; are imputed.
To account for parameter uncertainty, not just outcomes but also the parameters
0 are sampled.

After a set of burn-in sequences, the first imputation is obtained. After that, a new
set of cycles is run to obtain the second imputation, etc. Apart from the regression
method, the FCS statement also allows for the logistic, discriminant, and predictive
mean matching methods.

Age-related macular degeneration trial

When analyzing the data using WGEE in Section 7.7, one complication that arose
was that only monotone missingness is allowed. We, therefore, removed the non-
monotone sequences. To overcome this, MI is an appealing alternative. We can
either monotonize the data and still apply WGEE, or impute the incomplete data
altogether, followed by standard GEE. We will refer to the latter methods as
MI-GEE.

An appealing feature of MI is that imputation can be based on the continuous
outcome (visual acuity in this case) before dichotomizing the outcome. See also
Mallinckrodt and Lipkovich (2016, Sec. 15.4). In other words, more information can
be used during imputation than when analyzing the data. Here, this takes the form
of outcomes prior to dichotomization. Additionally, auxiliary covariates can be used
in the imputation process as well. We take both of these measures in this analysis.
Ten multiply-imputed data sets were created. The imputation model also included,
apart from the four continuous outcome variables, the four-point categorical variable
‘lesions.’” For simplicity, the latter was treated as continuous. Separate imputations
were conducted for each of the two treatment groups. These choices imply that the
imputed values depend on lesions and treatment assignment, and, hence, analysis
models that include one or both of these effects are proper in the sense of Rubin
(1987). This means, broadly speaking, that the model used for imputation should
include all relationships that will be considered later in the analysis and inference
steps. The added advantage of including ‘lesions’ in the imputation model is that
even individuals for which none of the four follow-up measurements are available,
are still imputed and hence retained for analysis. Using the SAS procedure MI,
the MCMC method was used, with EM starting values, and a single chain for all
imputations.
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TABLE 7.9

Upon imputation, a marginal model (using GEE as in Section 7.7) was fitted,
together with a generalized linear mixed model as in Section 7.5. The final results,
obtained by making use of Rubin’s combination rules, are reported in Table 7.9.
The parameter estimates and standard errors are very similar to their counterparts
in Table 7.6 and 7.5, respectively. In the GEE case, the parameter estimates are
similar to those in Table 7.8, obtained with observation-level weights. Also, the
similarity between the direct likelihood method (bottom right column of Table 7.5)
is clear, with only a minor deviation in estimate for the treatment effect after one
year.

The Age-related Macular Degeneration Trial. Parameter estimates (standard errors) for the
standard GEE and numerical-integration based random-intercept models, after generating 10
multiple imputations.

Effect Par. GEE GLMM

Int.4 B11 -0.84(0.20) -1.46(0.36)
Int.12 B21 -1.02(0.22) -1.75(0.38)
Int.24 Bs1  -1.07(0.23) -1.83(0.38)
Int.52 Ba1 -1.61(0.27) -2.69(0.45)
Trt.4 B2 0.21(0.28)  0.32(0.48)
Trt.12 B22 0.60(0.29)  0.99(0.49)
Trt.24 B2 0.43(0.30)  0.67(0.51)
Trt.52 Baz 0.37(0.35)  0.52(0.56)
RIsd. 1 2.20(0.26)
R.I var. 72 4.85(1.13)

7.8.6 SAS for Multiple Imputation
To conduct multiple imputation in SAS, a sequence of three procedures is used:

Imputation Task: PROC MI: To generate M imputed data sets.

Analysis Task: Data analysis procedure: Using an appropriate procedure or other
analysis tool, the M imputed data sets are analyzed. For example, if a GLMM
is envisaged, PROC GLIMMIX or PROC NLMIXED can be used. Routinely,
parameter estimates and their estimated variance-covariance matrices are saved
into data sets.

Inference Task: PROC MIANALYZE: The combination rules are applied to the
data sets saved in the previous step and appropriate inferences are drawn.

We discuss each of these in turn.

PROC Ml

Some information on PROC MI was already given in Section 7.8.5, in relation to
the methodology used for generating imputations.

PROC MI creates M imputed data sets, physically stored in a single data set
with indicator _IMPUTATION_ to separate the various imputed copies from each
other. We will describe some options available in the PROC MI statement. The
option simple displays simple descriptive statistics and pairwise correlations based
on available cases in the input data set. The number of imputations is specified by
nimpute and is by default equal to 25 (as of SAS/STAT 14.1). The option round
controls the number of decimal places in the imputed values (by default, there is
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no rounding). If more than one number is specified, we should also use a VAR
statement, and the specified numbers must correspond to variables in the VAR
statement. The seed option specifies a positive integer, which is used by PROC
MI to start the pseudo-random number generator. The default is a value generated
from the time of day from the computer’s clock.

The imputation step is carried out separately for each level of the BY variables.

As stated in Section 7.8.5, there are three imputation statements. For monotone
missingness only, we use the MONOTONE statement, with options: reg for the
standard regression method, logistic for the logistic regression method, discrim
for the discriminant analysis method, regpmm for the predictive mean matching
method, and propensity for the propensity score method. We can specify more
than one method in the MONOTONE statement, and for each imputed variable,
the covariates can be specified separately.

For general patterns of missingness, we can use the MCMC statement, which
is also the default. Recall that the method uses a multivariate normal model. or
the MCMC method. We can give the initial mean and covariance estimates to
begin the MCMC process by initial. Tools are available to monitor convergence
of the MCMM sequence. With initial=EM (default), PROC MI uses the means
and standard deviations from available cases as the initial estimates for the EM
algorithm. The resulting estimates are used to begin the MCMC process. We can
also specify initial=input SAS-data-set to use a SAS data set with the initial
estimates of the mean and covariance matrix for each imputation. Further, niter
specifies the number of iterations between imputations in a single chain (the default
is equal to 30).

As already mentioned in Section 7.8.5, for full conditional specification, the FCS
statement is available, with the same modeling options as for the MONOTONE state-
ment (reg, logistic, discrim, and regpmm), except propensity. Using nbiter,
the number of burn-in iterations can be specified.

The CLASS statement is intended to specify categorical variables. Such classifi-
cation variables are used as either covariates for imputed variables or as imputed
variables for data sets with monotone missingness patterns. When a CLASS state-
ment is included, either MONOTONE or FCS must be used.

Of note is the EM statement. It calculates expectation-maximization (EM)
algorithm based parameter estimates for a multivariate normal sample (Dempster,
Laird, and Rubin, 1977). When the number of iterations is set equal to zero and
the EM statement is invoked, PROC MI in fact calculates EM-based rather than
MI-based estimates. The EM estimates are also useful as initial values for the various
MI techniques.

When a variable is assumed to be normally distributed but its actual distribution
is deviating from it, the TRANSFORM statement can be used to transform the
variable, using one of the prescribed transformations, such as Box-Cox, logarithmic,
logistic, etc.

When using MI for longitudinal or otherwise hierarchical data, some data analysis
is necessary before and after invoking PROC MI. In most hierarchical data sets,
there is a single data set line reserved for each measurements. This implies that
a subject (block) runs across several lines. We term this the vertical (counting
process) layout. However, PROC MI assumes that each line is an independent
block, the horizontal (multivariate) layout. Therefore, a hierarchical data set has
to be transformed from a vertical to a horizontal format prior to calling PROC
MI. Afterwards, the output data set needs to be transformed again to the vertical
format, to allow calling one of the hierarchical procedures, such as GENMOD, GEE,
MIXED, GLIMMIX, NLMIXED, etc.

Discussion of one further statement available in the MI procedure, the MNAR
statement, is deferred to Section 7.11.



358

Analysis of Clinical Trials Using SAS: A Practical Guide, Second Edition

PROGRAM 7.18

Data Analysis Procedure

Next, the imputed data sets are analyzed using a standard procedure. It is important
to ensure that the BY _imputation_ syntax is used to force an analysis for each of
the imputed sets of data separately. Appropriate output (estimates and the precision
thereof) is stored in output data sets, typically using the generic ODS statement. In
most cases, it is also advisable to save parameter names along with their values, to
facilitate proper matching between the components of a parameter vector and that
of the corresponding variance-covariance matrix.

PROC MIANALYZE

Finally, PROC MIANALYZE combines the M inferences into a single one, by
making use of the theory laid out in Section 7.8.2. Appropriate output data sets
generated by the analysis procedure and containing parameter estimates, precision
estimates, and parameter names, are used as input data sets to PROC MIANALYZE.
Depending on the input procedure, such information is passed on using one or more
of the following options: parms=, data=, parminfo=, covb=, and/or xpxi=.

The parameters to be analyzed are passed on via the MODELEFFECTS state-
ment. If some effects correspond to categorical variables, the CLASS statement
should be used. Unless a dedicated data structure is used to pass on parameter esti-
mates and the corresponding variance-covariance matrices, the STDERR statement
needs to be used to pass on the corresponding standard errors. In that case, both
estimates and standard errors come from an ordinary SAS data set.

The TEST statement allows testing of hypotheses about linear combinations of
the parameters. The statement is based on Rubin (1987), and uses a t distribution
which is the univariate version of the work by Li, Raghunathan, and Rubin (1991),
described in Section 7.8.3. Several tests can be combined; each hypothesis testing
can be simple or compound.

7.8.7 SAS Code for Age-related Macular Degeneration Trial

The three steps associated with MI, discussed earlier in this section, will be illustrated
using the ARMD analysis reported in Section 7.8.5.

The MI Procedure for the Imputation Task

PROC MI is used to generate the imputations. It creates M imputed data sets
from an input data set, physically stored in a single data set with indicator variable
_imputation_, created by the procedure, to separate the imputed copies.

For imputations from a multivariate Gaussian imputation model, the following
MI program can be used:

PROC Ml for the Imputation Task, using MCMC

proc mi data=armdl3 seed=486048 out=armdl3a simple nimpute=10 round=0.1;
var lesion diff4 diff12 diff24 diffb2;

by treat;

run;

We have chosen to generate M = 10 imputed data sets, rather than the default
number of 25. Imputed values are rounded to one decimal place (by including
the round= option). Simple statistics are displayed in the output, because of the
inclusion of the simple option. As stated before, we allow for the imputation model
to depend on lesion (treated as a continuous variable) and treat (treated as
categorical, by including it in the BY statement).
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The seed= option is useful when a given data analysis needs to be reproducible,
because then every time the same seed is used on the same input data and with the
same imputation model (and hence the same program), the same random values
will be generated.

Observe that no imputation method is specified, i.e., that there is no MONO-
TONE, MCMC, or FCS statement. As a result, the default MCMC method will be
invoked. To use, for example, FCS, Program 7.19 can be used instead.

PROC Ml for the Imputation Task, using FCS

proc mi data=m.armd13 seed=486048 simple out=m.armd13fcs nimpute=30
round=0.01;

fcs reg(diff4=lesion);

fcs reg(diffi2=lesion diff4);

fcs reg(diff24=lesion diff4 diffi12);

fcs reg(diffb2=lesion diff4 diff12 diff24);

var lesion diff4 diff12 diff24 diffb2;

by treat;

run;

Note that, after carrying out the imputation step, the data are still in horizontal
format and need to put in the longitudinal, or vertical, format again, which will be
done at the outset of the analysis step.

The Analysis Task

The imputed data sets are now analyzed using a standard complete data procedure.
It is important to include BY _imputation_ to ensure that a separate analysis be
carried out for each completed data set.

Also, parameter estimates and their estimated covariance matrices need to be
stored in appropriate output data sets, so they can be passed on to the MIANALYZE
procedure. We will return to this when discussing the inference step.

To prepare for the data analysis, indicator variables are created, and then the
data are sorted by imputation number. A step, specific for our analysis, is that we
need to dichotomize the variables.

Dichotomization of imputed data

proc sort data=m.armdl13a;
by _imputation_ subject;
run;

data m.armd13a;

set m.armd13a;

bindif4=0; if diffd4 <= 0 then bindif4=1;
bindif12=0; if diff12 <= then bindif12=1;
bindif24=0; if diff24 <= then bindif24=1;
bindifb52=0; if diffb2 <= then bindifb2=1;
if diff4=. then bindif4=.;

if diff12=. then bindifi12=.;

if diff24=. then bindif24=.;

if diff52=. then bindif52=.;

run;

o O O

Next, the data are transformed from the horizontal format to a vertical one, to
allow for longitudinal analyses.
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PROGRAM 7.21 Transforming a horizontal data set in a vertical data set

PROGRAM 7.22

PROGRAM 7.23

data m.armd13b;
set m.armd13a;

array x (4) bindif4 bindif12 bindif24 bindifb52;

array y (4) diff4 diff12 diff24 diff52;
do j=1 to 4;

bindif=x(j);
diff=y(j);
time=j;
output;

end;
run;

While the MIXED, GEE, GENMOD, and GLIMMIX procedures can handle CLASS
variables, dummies need to be expressly created for use with the NLMIXED

procedure.

Creating dummies

data m.armd13c;
set m.armd13b;
timel=0;
time2=0;
time3=0;
timed=0;
trttimel=0;
trttime2=0;
trttime3=0;
trttimed=0;
time=1 then timel=1;
time=2 then time2=1;
time=3 then time3=1;
time=4 then time4=1;

if
if
if
if
if
if
if
if

(time=1 & treat=1)
(time=2 & treat=1)
(time=3 & treat=1)
(time=4 & treat=1)

run;

then
then
then
then

proc sort data=m.armd13cs;
by _imputation_ subject time;
run;

The GENMOD or GEE procedures can then be called for a GEE analysis.

trttimel=1;
trttime2=1;
trttime3=1;
trttimed=1;

GEE after multiple imputation

proc gee data=armdi3c;

class time subject;

by

model bindif = timel time2 time3 time4 trttimel trttime2 trttime3 trttimed

repeated subject=subject / withinsubject=time type=exch modelse covb;
ods output GEEEmpPEst=gmparms parminfo=gmpinfo GEERCov=gmcovb;

_imputation_;

/ noint dist=binomial;

run;
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While we could have used the coding time treat*time, the already created dummies
are used instead. This makes no difference. The BY statement has been added, as
well as the ODS statement, to store the parameter estimates and the covariance
parameters. For the latter, the parminfo= option is used next to the covb= option,
to ensure that the proper names of the covariate effects are mapped to abbreviations
of type Prm1, etc. The parameter estimates are generated by default. The output of
the GEE procedure will be a GEE analysis for each of the ten imputed data sets. As
such, they represent an intermediate step in the full multiple imputation analysis
and are of no direct scientific interest. Formal inference needs to be conducted using
only the results from the inference step.

Because the noint option was included, the effect Prm1 formally exists when
PROC GENMOD is used (not when PROC GEE is used), but is unavailable as
a parameter estimate. It is, therefore, necessary to delete it from the parameter
information, as in Program 7.24:

Deletion of redundant intercept name

data gmpinfo;

set gmpinfo;

if parameter=’Prml’ then delete;
run;

The above program should not be used with PROC GEE.

Analogously, the GLMM analysis can be conducted on the multiple imputed
data sets. Evidently, both the procedures GLIMMIX and NLMIXED can be used.
It is interesting to illustrate the use of a programming-type procedure, such as
NLMIXED, in conjunction with multiple imputation.

GLMM after multiple imputation

proc nlmixed data=armdl3c qpoints=20 maxiter=100 technique=newrap cov ecov;
by _imputation_;
eta = betall*timel+betal2*time2+betal3*time3+betald*timed+b
+beta2l*trttimel+beta22*trttime2+beta23*trttime3+beta24*xtrttimed;
p = exp(eta)/(1+exp(eta));
model bindif ~ binary(p);
random b ~ normal(0,tau*tau) subject=subject;
estimate ’tau2’ tauxtau;
ods output ParameterEstimates=nlparms
CovMatParmEst=nlcovb
AdditionalEstimates=nlparmsa
CovMatAddEst=nlcovba;
run;

Apart from adding the BY statement, we now also generate four output data
sets using the ODS statement. For the standard model parameters, we only need
the parameterestimates= and covmatparmest= options. If, in addition, multiple
imputation inference is requested about additional estimates, then they can be saved
as well using the additionalestimates= and covmataddest= options. However, it
is also possible to calculate the additional estimates directly from the results of the
inference step, i.e., to conduct multiple imputation inference first and then calculate
additional estimates, rather than the other way around. For both covariance matrices
to be generated, the options cov and ecov, respectively, need to be included into
the PROC NLMIXED statement.

For both the GEE and GLMM models, we can now conduct multiple imputation
inference, following Rubin’s combination rules.
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The Inference Task

Applying the MIANALYZE procedure to the GEE analysis on the ARMD data,
presented in Section 7.8.7, can be done using the code in Program 7.26.

PROGRAM 7.26 Inference step after GEE

proc mianalyze parms=gmparms covb=gmcovb parminfo=gmpinfo wcov bcov tcov;
modeleffects timel time2 time3 time4 trttimel trttime2 trttime3 trttime4;
run;

Conducting multiple imputation inference for the NLMIXED analysis, presented in
Section 7.8.7, is done by means of Program 7.27.

PROGRAM 7.27 Inference step after GLMM

proc mianalyze parms=nlparms covb=nlcovb wcov bcov tcov;
modeleffects betall betal2 betal3 betald beta2l beta22 beta23 beta24;
run;

7.8.8 Creating Monotone Missingness

When missingness is non-monotone, we might think of several mechanisms operating
simultaneously: e.g., a simple (MCAR or MAR) mechanism for the intermediate
missing values and a more complex (MNAR) mechanism for the missing data
past the moment of dropout. However, analyzing such data is complicated since
many model strategies, especially those under the assumption of MNAR, have been
developed for dropout only. Therefore, a solution might be to generate multiple
imputations that make all patterns monotone, by use of Program 7.28.

PROGRAM 7.28 Creating monotone missingness
mcmc impute=monotone;
Once done, we can apply a method of choice to the so-completed multiple sets of

data. Note that this is different from the monotone method in PROC MI, intended
to fully complete already monotone sets of data.

7.9 An Overview of Sensitivity Analysis

All methods considered so far are valid under MAR and then evidently also under
MCAR. The only exception is unweighted GEE, for which in general MCAR is
required.

We should not lose sight of the fact that an MNAR mechanism might be operating
while it is at the same time formally impossible to distinguish between MAR, and
MNAR mechanisms, based on observed data alone (Molenberghs et al., 2008). Thus,
while it is formally possible to fit models under the assumption of MNAR (Diggle
and Kenward, 1994; Verbeke and Molenberghs, 2000, Ch. 18), these should not be
considered as evidence for or against MNAR. It is a more viable route to explore
how sensitive key inferences (e.g., in terms of parameter estimation or hypothesis
testing) are to varying assumptions about the missing-data mechanism. This type of
sensitivity to non-identifiable assumptions has been reported in various publications
(Verbeke and Molenberghs, 2000; Molenberghs and Verbeke, 2005; Molenberghs and
Kenward, 2007).



Chapter 7 Analysis of Incomplete Data 363

Therefore, a sensible compromise between blindly shifting to MNAR models or
ignoring them altogether, is to make them a component of a sensitivity analysis.

Broadly, we could define a sensitivity analysis as one in which several statistical
models are considered simultaneously and/or where a statistical model is further
scrutinized using specialized tools (such as diagnostic measures). This rather loose
and very general definition encompasses a wide variety of approaches. The simplest
procedure is to fit a selected number of (MNAR) models that are all deemed plausible,
or one in which a preferred (primary) analysis is supplemented with a number of
variations. The extent to which conclusions (inferences) are stable across such ranges
provides an indication about the belief that can be put into them. Variations to a
basic model can be constructed in different ways. The most obvious strategy is to
consider various dependencies of the missing data process on the outcomes and/or
on covariates. Alternatively, the distributional assumptions of the models can be
changed. For example, it is natural to start from a primary model of MAR type,
and then to consider variations of an MNAR nature.

Several authors have proposed the use of global and local influence tools (Verbeke
et al., 2001, Verbeke and Molenberghs, 2000; Molenberghs and Verbeke, 2005). An
important question is to what exactly are the sources causing an MNAR model
to provide evidence for MNAR against MAR? There is evidence to believe that
a multitude of outlying aspects, but not necessarily the (outlying) nature of the
missingness mechanism in one or a few subjects, is responsible for an apparent
MNAR mechanism (Jansen et al., 2006). The consequence of this is that local
influence should be applied and interpreted with due caution. This methodology
will be illustrated in Section 7.10.

Another route for sensitivity analysis is by making use of pattern-mixture models
(Little, 1993, 1994; Thijs et al., 2002; Michiels et al., 2002). In a PMM, the joint
distribution of Y; and R; is factored as the conditional distribution of Y; given R;
and the marginal distribution of R,;. Recently, this family has gained considerable
interest, also due to the work of Carpenter, Roger, and Kenward (2013) and
Carpenter and Kenward (2013). Some PMM-based strategies are implemented in
the SAS procedure MI, through the MNAR statement. This family will be examined
in detail in Section 7.11.

A further framework consists of so-called shared parameter models, where random
effects are employed to describe the relationship between the measurement and
dropout processes (Wu and Carroll, 1988; DeGruttola and Tu, 1994)

Robins, Rotnitzky, and Scharfstein (1998) discuss sensitivity analysis in a semi-
parametric context.

Further, within the selection model framework, Baker, Rosenberger, and Der-
Simonian (1992) proposed a model for multivariate and longitudinal binary data,
subject to non-monotone missingness. Jansen et al. (2003) extended this model to
allow for (possibly continuous) covariates, and developed a local influence strategy.

Finally, classical inference procedures account for the imprecision resulting from
the stochastic component of the model. Less attention is devoted to the uncertainty
arising from (unplanned) incompleteness in the data, even though the majority
of clinical studies suffer from incomplete follow-up. Molenberghs et al. (2001)
acknowledge both the status of imprecision, due to (finite) random sampling, as well
as ignorance, due to incompleteness. Further, both can be combined into uncertainty
(Kenward, Molenberghs, and Goetghebeur, 2001).

7.10 Sensitivity Analysis Using Local Influence

We first introduce the Diggle and Kenward (1994) model, combining a linear mixed
model with a model for dropout based on logistic regression, in the spirit of (7.3.11).
Thereafter, the use of local influence to examine sensitivity is described.
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7.10.1 The Model of Diggle and Kenward (DK; 1994)

In agreement with notation introduced in Section 7.3, we assume that a vector of
outcomes Y; is designed to be measured. If dropout occurs, Y; is only partially
observed. We denote the occasion at which dropout occurs by D; > 1, and Y; is
split into the (D; — 1)-dimensional observed component Y;* and the (n; — D; + 1)-
dimensional missing component Y;". In case of no dropout, we let D; = n; + 1, and
Y; equals Y;°. The likelihood contribution of the ¢th subject, based on the observed
data (y¢,d;), is proportional to the marginal density function

g, dil6, ) = / Flyir di10, ) dyl"

= /f(yile)f(dilyi, ) dyi", (7.10.30)

in which a marginal model for Y; is combined with a model for the dropout process,
conditional on the response, and where 8 and 1 are vectors of unknown parameters
in the measurement model and dropout model, respectively.

Let h;j = (yi1,.-.,Yi;j—1) denote the observed history of subject ¢ up to time
t;,j—1. The Diggle-Kenward model for the dropout process allows the conditional
probability for dropout at occasion j, given that the subject was still observed at the
previous occasion, to depend on the history h;; and the possibly unobserved current
outcome y;;, but not on future outcomes y;x, £ > j. These conditional probabilities
P(D; = j|D; > j,hij;, yi;, ¥) can now be used to calculate the probability of dropout
at each occasion:

P(D; = jly;,¥) = P(D; = jlhij,yij, V)
P(D; = j|D; > j,hij, yij, %) Jj=2,
P(D; = j_\Di > 4, hij, yij, )

Jj—1
k=2

k=2

Diggle and Kenward (1994) combine a multivariate normal model for the mea-
surement process with a logistic regression model for the dropout process. More
specifically, the measurement model assumes that the vector Y; of repeated mea-
surements for the ith subject satisfies the linear regression model Y; ~ N(X;3,V;),
(¢=1,...,N). The matrix V; can be left unstructured or assumed to be of a specific
form, e.g., resulting from a linear mixed model, a factor-analytic structure, or spatial
covariance structure (Verbeke and Molenberghs, 2000).
In the particular case that a linear mixed model is assumed, we write

Y, =X.8+2Zb; +¢, (7.10.31)

(Verbeke and Molenberghs, 2000) where Y'; is the n dimensional response vector
for subject i, 1 <i < N; N is the number of subjects; X; and Z; are (n X p) and
(n x q) known design matrices; 3 is the p dimensional vector containing the fixed
effects; and b; ~ N(0,G) is the ¢ dimensional vector containing the random effects.
The residual components g; ~ N (0, ;).
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The logistic dropout model can, for example, take the form:

logit [P(D; = j | Di > j, hij, yij, ¥)]
=9 + V1¥ij-1 + Y2y (7.10.32)

More general models can easily be constructed by including the complete history
hi; = (Yi1,...,¥ij—1), as well as external covariates, in the above conditional
dropout model. Note also that, strictly speaking, we could allow dropout at a specific
occasion to be related to all future responses as well. However, this is rather counter-
intuitive in many cases. Moreover, including future outcomes seriously complicates
the calculations since computation of the likelihood (7.10.30) then requires evaluation
of a possibly high-dimensional integral. Note also that special cases of model (7.10.32)
are obtained from setting ¥y = 0 or ¢ = 99 = 0, respectively. In the first case,
dropout is no longer allowed to depend on the current measurement, implying MAR.
In the second case, dropout is independent of the outcome, which corresponds to
MCAR.

Diggle and Kenward (1994) obtained parameter and precision estimates by
maximum likelihood. The likelihood involves marginalization over the unobserved
outcomes Y;". Practically, this involves relatively tedious and computationally
demanding forms of numerical integration. This, combined with likelihood surfaces
tending to be rather flat, makes the model difficult to use. These issues are related
to the problems to be discussed next.

7.10.2 Local Influence

The local influence approach, suggested by Cook (1986), can be used to investigate
the effect of extending an MAR model for dropout in the direction of MNAR dropout
(Verbeke et al., 2001).

We start from the DK model introduced in Section 7.10.1. Since no data would
be observed otherwise, we assume that the first measurement Y;; is obtained for
every subject in the study. We denote the probability of dropout at occasion k,
given that the subject was still in the study up to occasion k by g(hk, yix). For the
dropout process, we now consider an extension of model (7.10.32), which can be
written as

logit [g(hik, yix)] = logit [P(D; = k|D; > k,y,)]

(7.10.33)
= hi + wyij.

When w equals zero and the model assumptions made are correct, the posited dropout
model is MAR, and all parameters can be estimated using standard software since
the measurement and dropout model can then be fitted separately. If w # 0, the
dropout process is assumed to be MNAR. Now, a dropout model might be found to be
MNAR solely because one or a few influential subjects have driven the analysis. To
investigate sensitivity of estimation of quantities of interest, such as treatment effect,
growth parameters, or the dropout model parameters, with respect to assumptions
about the dropout model, we consider the following perturbed version of (7.10.33):

logit [g(hik,yik)] = logit [P(D; = k|D; > k,y,;, W;)]

(7.10.34)
= hgy +wiyik t=1,...,N.

There is a fundamental difference with model (7.10.33) since the w; should not be
viewed as parameters: They are local, individual-specific perturbations around a
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null model. In our case, the null model will be the MAR model, corresponding to
setting w = 0 in (7.10.33). Thus, the w; are perturbations that will be used only to
derive influence measures (Cook, 1986).

This scheme enables studying the effect of how small perturbations in the MNAR
direction can have a large impact on key features of the model. Practically, one way
of doing this is to construct local influence measures (Cook, 1986). Clearly, not all
possible forms of impact resulting from sensitivity to dropout model assumptions,
will be found in this way, and the method proposed here should be viewed as one
component of a sensitivity analysis (e.g., Molenberghs, Kenward, and Goetghebeur,
2001).

When small perturbations in a specific w; lead to relatively large differences in
the model parameters, it suggests that the subject is likely to drive the conclusions.

Cook (1986) suggests that more confidence can be put in a model that is relatively
stable under small modifications. The best known perturbation schemes are based on
case deletion (Cook and Weisberg, 1982) in which the effect is studied of completely
removing cases from the analysis. A quite different paradigm is the local influence
approach where we investigate how the results of an analysis are changed under
small perturbations of the model. In the framework of the linear mixed model,
Beckman, Nachtsheim, and Cook (1987) used local influence to assess the effect of
perturbing the error variances, the random-effects variances, and the response vector.
In the same context, Lesaffre and Verbeke (1998) have shown that the local influence
approach is also useful for the detection of influential subjects in a longitudinal
data analysis. Moreover, since the resulting influence diagnostics can be expressed
analytically, they often can be decomposed in interpretable components, which yield
additional insights into the reasons why some subjects are more influential than
others.

We are interested in the influence of MNAR dropout on the parameters of interest.
This can be done in a meaningful way by considering (7.10.34) as the dropout model.
Indeed, w; = 0 for all 7 corresponds to an MAR process, which cannot influence the
measurement model parameters. When small perturbations in a specific w; lead to
relatively large differences in the model parameters, this suggests that these subjects
might have a large impact on the final analysis. However, even though we might be
tempted to conclude that such subjects drop out non-randomly, this conclusion is
misguided because we are not aiming to detect (groups of) subjects that drop out
non-randomly but rather subjects that have a considerable impact on the dropout
and measurement model parameters. Indeed, a key observation is that a subject
that drives the conclusions towards MNAR might be doing so, not only because its
true data generating mechanism is of an MNAR type, but also for a wide variety of
other reasons, such as an unusual mean profile or autocorrelation structure. Earlier
analyses have shown that this might indeed be the case. Likewise, it is possible
that subjects, deviating from the bulk of the data because they are generated under
MNAR, go undetected by this technique.

Let us now introduce the key concepts of local influence. We denote the log-
likelihood function corresponding to model (7.10.34) by

N

((y|w) =D li(y|ws),

i=1

in which ¢;(y|w;) is the contribution of the ith individual to the log-likelihood,
and where v = (6,1)) is the s-dimensional vector, grouping the parameters of
the measurement model and the dropout model, not including the N x 1 vector
w = (w1, ws, ..., wy)" of weights defining the perturbation of the MAR model. Tt is
assumed that w belongs to an open subset  of IR". For w equal to wg = (0,0,...,0),
£(7y|wo) is the log-likelihood function that corresponds to a MAR dropout model.
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Let 4 be the maximum likelihood estimator for -, obtained by maximizing
£(7y|wo), and let 4, denote the maximum likelihood estimator for v under £(vy|w).
The local influence approach now compares 4, with 4. Similar estimates indicate
that the parameter estimates are robust with respect to perturbations of the MAR
model in the direction of non-random dropout. Strongly different estimates suggest
that the estimation procedure is highly sensitive to such perturbations, which, in
turn, suggests that the choice between an MAR model and a non-random dropout
model highly affects the results of the analysis. Cook (1986) proposed to measure
the distance between 4, and 4 by the so-called likelihood displacement, defined by

LD(w) = 2[{(¥|wo) = £(Yw|wo)]-

This takes into account the variability of 4. Indeed, LD (w) will be large if £(y|wg) is
strongly curved at 7, which means that ~ is estimated with high precision, and small
otherwise. Therefore, a graph of LD(w) versus w contains essential information
on the influence of perturbations. It is useful to view this graph as the geometric
surface formed by the values of the N + 1 dimensional vector &(w) = (w’, LD(w))’
as w varies throughout €.

Since this influence graph can only be depicted when N = 2, Cook (1986) proposed
to look at local influence, i.e., at the normal curvatures Cp, of £(w) in wy, in the
direction of some N dimensional vector h of unit length. Let A; be the s dimensional
vector defined by

0%Li(y|ws)

A, =
! Ow; 0

Y=,w;=0

and define A as the (s x N) matrix with A; as its ith column. Further, let L denote
the (s x s) matrix of second-order derivatives of ¢(y|wg) with respect to «, also

evaluated at v = 4. Cook (1986) has then shown that C}, can be easily calculated
by

Cy, = 2|W' A'L7*Ah|.

Obviously, C}, can be calculated for any direction h. One evident choice is the
vector h; containing one in the i¢th position and zero elsewhere, corresponding
to the perturbation of the ith weight only. This reflects the influence of allowing
the ¢th subject to drop out non-randomly, while the others can only drop out at
random. The corresponding local influence measure, denoted by C;, then becomes
C; = 2|ALL~'A;|. Another important direction is the direction hyay of maximal
normal curvature Ci.x. It shows how to perturb the MAR model to obtain the
largest local changes in the likelihood displacement. It is readily seen that Ci,ax is the
largest eigenvalue of —2 A’ LA, and that Amax is the corresponding eigenvector.

Age-related macular degeneration trial

In this section, in line with Beunckens et al. (2007) and Molenberghs and Kenward
(2007), the visual acuity in the ARMD trial is first analyzed using the DK model.
Apart from modeling the three missing data mechanisms MCAR, MAR, and MNAR,
explicitly, an ignorable analysis is also conducted. For the measurement model,
again, the linear mixed model was used, assuming different intercepts and treatment
effects for each of the four time points, with an unstructured covariance matrix,
as in (7.5.16). In the full selection models, the dropout is modeled as in (7.10.32).
Parameter estimates and corresponding standard errors of the fixed effects of the
measurement model and of the dropout model parameters are given in Table 7.10.

As expected, the parameter estimates and standard errors coincide for the ignor-
able likelihood analysis and the selection models under MCAR and MAR, except
for some negligible numerical noise.
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The Age-related Macular Degeneration Trial. Parameter estimates (standard errors) assuming
ignorability, as well as explicitly modeling the missing data mechanism under MCAR, MAR, and
MNAR assumptions, for all data.

Effect Parameter Ignorable MCAR MAR MNAR
Measurement model
Int. 4 Bi1 54.00 (1.47) 54.00 (1.46)  54.00 (1.47)  54.00 (1.47)
Int.12 Ba1 53.01 (1.60) 53.01 (1.59) 53.01 (1.60) 52.98 (1.60)
Int.24 Bz 49.20 (1.74) 49.20 (1.73)  49.19 (1.74)  49.06 (1.74)
Int.52 Ba 43.99 (1.79) 43.99 (1.78) 43.99 (1.79) 43.52 (1.82)
Trt. 4 B2 -3.11 (2.10) -3.11 (2.07)  -3.11 (2.09) -3.11 (2.10)
Trt. 12 Baz -4.54 (2.29) -4.54 (2.25) -4.54 (2.29) -4.67 (2.29)
Trt. 24 Ba2 -3.60 (2.49) -3.60 (2.46) -3.60 (2.50)  -3.80 (2.50)
Trt. 52 Bir  -5.18 (2.59) -5.18 (2.57) -5.18 (2.62)  -5.71 (2.63)
Dropout model
Int. Yo -2.79 (0.17)  -1.86 (0.46)  -1.81 (0.47)
Previous U1 -0.020 (0.009) 0.016 (0.022)
Current o -0.042 (0.023)
-2 log-likelihood
6488.7 6782.7 6778.4 6775.9
Treatment effect at 1 year (p-value)
0.046 0.044 0.048 0.030

Given that the main interest lies in the treatment effect at one year, the cor-
responding p-values are displayed in Table 7.10. In all four cases, this treatment
effect is significant.

Note that for the MNAR analysis, the estimates of the 1, and vy parameters are
more or less of the same magnitude, but with a different sign. This is in line with
the argument of Molenberghs et al. (2001), stating that the dropout often depends
on the increment y;; — y; j—1. By rewriting the fitted dropout model in terms of the
increment,

logit [pr(D; = j|D; > j,y;)] = —1.81 — 0.026y;, ;-1 — 0042(yz] — ym-_l),

we find that the probability of dropout increases with larger negative increments;
that is, those patients who showed or would have shown a greater decrease in visual
acuity from the previous visit are more likely to drop out.

Turning to local influence. Figure 7.2 displays overall C; and influences for sub-
vectors 6, 3, a, and . In addition, the direction h .y, corresponding to maximal
local influence, is given. The main emphasis should be put on the relative magnitudes.
We observe that patients #10, #27, #28, #114, #139, and #154 have larger C;
values compared to other patients, which means they can be considered influential.
Virtually the same picture holds for C; ().

Turning attention now to the influence on the measurement model, we see that for
C;(B3), there are no strikingly high peaks, whereas C;(a) reveals considerable peaks
for patients #68 and #185. Note that both patients fail to have a high peak for the
overall C;, owing to the fact that the scale for C;(a) is relatively small compared
to the overall C;. Nevertheless, these patients can still be considered influential.
Finally, the direction of maximum curvature reveals the same six influential patients
as the overall C;.



Chapter 7 Analysis of Incomplete Data 369

400000
!

300000
400
L

200000
L
300
L

#185

200
L

Figure 7.2 § e i
The Age-related A 1 H h ﬂ h L
Macular Degeneration o] = . . h : : L M n.‘ i ‘Mn . ﬂ-ﬂ
Trial. Index plots of (a) ° * 0 @ 100 50 20
Ci, (b) Ci(8), (c) (¢) (d)
Cl(a)’ (d) Cz(ﬂ), (e) et #68 et

06

Ci(v), and (f) of the
components of the
direction hp,,x,; of <
maximal curvature.

05
500
L

400
L

300
L

a4 #185

200
L

o o1
|
100
. .
="
.

s Uju lln .ﬁ.ﬂ

T T T T T T
50 100 150 200 0 50 100 150 200

(e) (f)
ci) i

#ar 37

°©

400000
L

#139
#139
#i0 [P#28
#114 et
#28 h J ﬂ

154

300000
L
05
L

00

200000
!

100000

#114

10
L

T T T T T T
0 50 100 150 200 0 50 100 150 200

In Figure 7.3, the individual profiles of the influential observations are highlighted.
Let us take a closer look at these cases. The six patients strongly influencing the
dropout model parameters are those dropping out after the first measurement is
taken at week 4. All of these patients are in the active treatment arm, except for
#27. On the other hand, the two patients with strong influence on the measurement
model parameters stay in the study up to week 24 and then have no observation for
the last measurement occasion at 1 year. Patient #68 received the active treatment,
and his/her visual acuity decreases substantially after week 4, thereafter staying
more or less level. Conversely, patient #185 is enrolled in the placebo treatment
arm and his/her visual acuity increases after week 4, then sloping downward a little
after week 12.

Figure 7.3
The Age-related @), ®.
Macular Degeneration
Trial. Individual profiles
for both treatment
arms, with influential
subjects highlighted.

Visual Acuity




370

TABLE 7.11

TABLE 7.12

Analysis of Clinical Trials Using SAS: A Practical Guide, Second Edition

It is of interest to consider an analysis without these influential observations.
Therefore, we applied the selection model on three subsets of the data. The first
subset obtains by removing all eight influential patients mentioned before. In the
second subset of the data, patients #10, #27, #28, #114, #139, and #154 were
removed, since these are overall the most influential ones. Finally, patients #68
and #185, which seemed to be influencing the measurement model the most, were
removed, resulting in the third subset. Results of these analyses are shown in
Tables 7.11 and 7.12. We compare the results of the MAR and MNAR analyses.

The Age-related Macular Degeneration Trial. Parameter estimates (standard errors) explicitly
modeling the missing data mechanism under MAR assumptions, after removing the following
subsets of subjects Set 1: (10,27, 28,114, 139, 154, 68, 185); Set 2: (10,27, 28,114,139, 154); and

Set 3: (68, 185).

Set 1 Set 2 Set 3

Effect Parameter MAR MAR MAR
Measurement model
Int. 4 B 54.14(1.51)  54.30(1.47)  53.84(1.48)
Int.12 B 53.09(1.64)  53.16(1.59)  52.94(1.60)
Tnt.24 Ba1 49.56(1.77)  49.31(1.74)  49.44(1.73)
Int.52 Bur 44.40(1.82)  44.00(1.79)  44.38(1.78)
Trt. 4 Bz 3.13(2.17)  -3.28(2.08)  -2.95(2.07)
Trt.12 Bas 4.48(2.36)  -4.55(2.26)  -4.47(2.26)
Trt.24 B 3.80(2.56)  -3.55(2.48)  -3.85(2.44)
Trt.52 B4z -5.45(2.66) -5.06(2.59) -5.56(2.55)
Dropout model

Intercept Yo -1.90(0.47) -1.90(0.47) -1.85(0.46)
Previous s -0.019(0.010)  -0.019(0.010)  -0.020(0.009)
-2 log-likelihood 6535.3 6606.9 6706.4
Treatm. eff. at 1 year (p-value) 0.040 0.051 0.029

The Age-related Macular Degeneration Trial. Parameter estimates (standard errors) explicitly
modeling the missing data mechanism under MNAR assumptions, after removing the following
subsets of subjects Set 1: (10,27, 28,114, 139, 154, 68, 185); Set 2: (10, 27,28, 114,139, 154); and

Set 3: (68,185).

Set 1 Set 2 Set 3

Effect Parameter MNAR MNAR MNAR
Measurement model
Int. 4 P11 54.15(1.49) 54.30(1.46) 53.84(1.47)
Int.12 Bo 53.06(1.62)  53.13(1.59)  52.91(1.59)
Int.24 B 49.46(1.75)  49.20(1.72)  49.31(1.72)
Int.52 B 43.97(1.84)  43.58(1.82)  43.90(1.82)
Trt. 4 Bz 3.13(2.11)  -3.28(2.06)  -2.95(2.05)
Trt.12 Ban -4.63(2.29)  -4.69(2.24)  -4.60(2.23)
Trt.24 B 4.04(2.49)  -3.79(2.44)  -4.04(2.42)
Trt.52 Biz 6.12(2.66)  -5.72(2.61)  -6.09(2.58)
Dropout model

Intercept o -1.85(0.49) -1.85(0.49) -1.81(0.47)
Previous U 0.018(0.022)  0.017(0.022)  0.017(0.022)
Current s -0.044(0.024)  -0.043(0.024) -0.043(0.024)
-2 log-likelihood 6532.7 6604.4 6703.8
Treatm. eff. at 1 year (p-value) 0.021 0.028 0.018
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After removing the patients, who have large overall C; and C;(v) values, the
estimates of the dropout model parameters 1, and 12 are approximately the same,
whereas the estimate of 1y decreases from —1.86 to —1.90 under MAR, and from
—1.81 to —1.85 under MNAR. The same can be seen after removing all patients.
Considering the treatment effect at 1 year, its estimate under the MAR analysis
increases from —5.18 to —5.06, yielding a slightly increased borderline p-value,
whereas under the MNAR analysis it decreases with 0.01. Together with a decreased
standard error this yields a small decrease in the p-value.

There is no impact on the likelihood ratio test for MAR against MNAR: After
removing either patients #10, #27, #28, # 114, #139, and #154, or all influential
patients, G2 remains 2.5. If this likelihood ratio test would follow a standard x?-
distribution, we would fail to reject the null hypothesis, which leads us to the MAR
assumption. However, the test of MAR against MNAR is non-standard and the
conventional chi-squared approximation cannot be used for its null distribution
(Rotnitzky et al., 2000, Jansen et al., 2006).

Finally, we perform the same analyses on the third subset, with patients #68
and # 185 removed. Both for the MAR and MNAR analysis, the estimate of the
treatment effect at 1 year decreases quite a lot, from —5.18 to —5.56 and from —5.71
to —6.09 respectively. Consequently, the p-value also drops down from 0.048 to
0.029 under MAR and from 0.030 to 0.018 under the MNAR analysis. The deviance
for the likelihood ratio test for MAR against MNAR only changes slightly from 2.5
to 2.6.

7.11 Sensitivity Analysis Based on Multiple Imputation and
Pattern-Mixture Models

In Section 7.11.1, the strategies to fit pattern-mixture models as described in
Molenberghs and Kenward (2007, Ch. 17) are reviewed and applied to the ARMD
data. In Section 7.11.2, sensitivity analyses methods, combining pattern-mixture
models (PMM) and multiple imputation are described and their SAS implementation
discussed.

7.11.1 Pattern-Mixture Strategies

PMM are inherently under-identified, because the data available for modeling within
a given pattern are by definition confined to the observed components only. Verbeke
and Molenberghs (2000) and Molenberghs and Kenward (2007) consider several
identification strategies.

Strategy 1. Little (1993, 1994) addresses the under-identification through the use
of identifying restrictions: Within a given pattern, the predictive distribtuion
of the unobserved measurements, given the observed ones, is set equal to its
counterpart from other patterns (e.g., the completers’ pattern, termed CCMV;
the neigboring pattern, termed NCMV; or a particular combination across all
patterns from which the distribution is estimable, termed ACMYV).

Strategy 2. As an alternative to identifying restrictions, model simplification can
be undertaken to identify the parameters. The advantage is that the number of
parameters decreases, which is desirable since the length of the parameter vector
is a general issue with pattern-mixture models. Hogan and Laird (1997) noted
that, to estimate the large number of parameters in general pattern-mixture
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models, we have to make the awkward requirement that each dropout pattern
occurs sufficiently often. Broadly, we distinguish between two interconnected
types of simplifications.

® Strategy 2a. Trends can be restricted to functional forms supported by the
information available within a pattern. For example, a linear or quadratic time
trend is easily extrapolated beyond the last obtained measurement. We merely
need to provide an ad hoc solution for the first or the first few patterns. To fit
such models, a conventional model building exercise is conducted within each
of the patterns separately.

® Strategy 2b. Alternatively, we can choose to let the model parameters vary
across patterns in a controlled parametric way. Thus, rather than estimating a
separate time trend within each pattern, we might for example assume that the
time evolution within a pattern is unstructured, but parallel across patterns.
This can be done by treating pattern as a covariate. The available data can be
used to assess whether such simplifications are supported over the time ranges
for which information is collected.

While the second strategy is computationally the simpler, there is a price to pay.
Such simplified models, qualified as ‘‘assumption rich” by Sheiner, Beal, and Dunne
(1997), are also making untestable assumptions, exactly as in the selection model
case. Using the fitted profiles to predict their evolution beyond the time of dropout
is nothing but extrapolation. It is possible only by making the models sufficiently
simple. It is, for example, not possible to assume an unstructured time trend
in incomplete patterns and then still extrapolate in an unambiguous fashion. In
contrast, assuming a linear time trend allows estimation in all patterns containing
at least two measurements. However, it is less obvious what the precise nature of
the dropout mechanism is. Kenward, Molenberghs, and Thijs (2003) examined what
restrictions need to be imposed, in the context of longitudinal data with dropout,
to ensure that the dropout probability does not depend on future measurements,
given past and current values. Strategy 2 is not compliant with this requirement,
but the same is true for CCMV and NCMV.

A final observation, applying to both strategies, is that pattern-mixture models
do not always automatically provide estimates and standard errors of marginal
quantities of interest, such as overall treatment effect or overall time trend. Hogan
and Laird (1997) provided a way to derive selection model quantities from the
pattern-mixture model. This is a first instance in the PMM context where multiple
imputation comes in handy. Several authors have followed this idea to formally
compare the conclusions from a selection model with the selection model parameters
derived from a pattern-mixture model (Verbeke, Lesaffre, and Spiessens, 1998;
Michiels, Molenberghs, and Lipsitz, 1999).

To better see how this method works, we briefly sketch the sequence of steps to
be followed.

1. Fit a model to the pattern t-specific identifiable densities: fi(y1,...,y:). This
results in a parameter estimate, 7,.

2. Select an identification method of choice.

3. Using this identification method, determine the conditional distributions of the
unobserved outcomes, given the observed ones:

ft(yt+1a"'ayT|yla"'7yt>- (71135)

4. Using standard MI methodology, draw multiple imputations for the unobserved
components, given the observed outcomes and the correct pattern-specific density
(7.11.35).
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5. Analyze the multiply-imputed sets of data using the method of choice. This
can be another pattern-mixture model, but also a selection model or any other
desired model.

6. Inferences can be conducted using the standard combination rules.

Age-related macular degeneration trial

We now consider the use of pattern-mixture models for these data. Here, we will
apply the first strategy making, use of CCMV, NCMV, and ACMYV identifying
restrictions.

The results for the three types of restrictions are shown in Table 7.13. After
applying each one of the three restrictions, the same selection model as before is
fitted. It can be seen from the estimates and associated standard errors that there
is little difference in conclusions between the strategies.

The Age-related Macular Degeneration Trial. Parameter estimates (standard errors) and p-values
resulting from the pattern-mixture model using identifying restrictions ACMV, CCMV, and
NCMV.

Effect Parameter ACMV CcCMV NCMV
Parameter estimate (standard error)
Intercept 4 B 54.00(1.47) 54.00(1.47) 54.00(1.47)
Intercept 12 B 52.87(1.68) 52.92(1.61) 52.86(1.63)
Intercept 24 Ba1 48.65(2.00) 49.16(1.87) 48.77(1.78)
Intercept 52 Bat 44.19(2.14) 44.69(2.54) 44.00(1.80)
Treatment 4 B -3.11(2.10)  -3.11(2.10)  -3.11(2.10)
Treatment 12 B2 4.18(2.48)  -4.07(2.30)  -4.40(2.42)
Treatment 24 Bs2 -4.36(3.83)  -5.14(3.61) -4.19(2.62)
Treatment 52 Baz 5.04(3.86) -2.33(4.93) -4.89(2.70)
p-values

Intercept 4 B11 - - -
Intercept 12 B21 < .0001 < .0001 < .0001
Intercept 24 Bs1 < .0001 < .0001 < .0001
Intercept 52 Ba < .0001 < .0001 < .0001
Treatment 4 B2 - - -—-
Treatment 12 Baz 0.092 0.077 0.069
Treatment 24 B30 0.271 0.173 0.110
Treatment 52 Bz 0.211 0.647 0.071

In the pattern-mixture approach, we use information from different patterns
to multiply impute new values whenever the observations are missing. Borrowing
information from more distant patterns, such as the complete cases, can introduce
extra variability, depending on the nature of the conditional distributions sampled
from. It is not unexpected, therefore, for the variability to be smallest when applying
NCMYV, as seen in the standard errors.

It can be seen from these analyses that the treatment effect at week 52 is not
statistically significant, in contrast to the conclusions based on Tables 7.10 and 7.11.
The p-value is closest to significance with NCMV restrictions.

The fact that no significant treatment effect is found here, suggests caution
concerning the conclusions obtained under the selection model formulation. This
implies that a significant treatment effect is conditional upon the MAR assumption
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holding. We would feel more comfortable about a significant treatment effect if it
were holding across MAR and a number of MNAR scenarios. Thus, at best, it is
fair to say that there is a weak evidence only for a treatment effect.

7.11.2 Pattern-Mixture Based Sensitivity Analysis

The PMM framework is very rich, and sensitivity analyses can be conducted from
various perspectives. For example, we can use the PMM framework to examine the
impact of certain departures from MAR (e.g., when patients would evolve differently
after dropout, while still on the same treatment). A different perspective is the
examination of potential outcomes that patients would have had, had they switched
to alternative treatment strategies after dropping out (Little and Kang, 2015).

From a technical point of view, the algorithm described on page 372 is very
general and allows for a variety of sensitivity analysis routes.

First, by simply varying the identifying restrictions (e.g., by juxtaposing ACMV,
CCMV, and NCMV; but there are several others) a sensitivity analysis results.
Note that ACMV corresponds to MAR in the PMM framework (Molenberghs et al.,
1998); the other two can then be seen as deviations from it.

Second, it is of course possible to identify conditional densities of the form (7.11.35)
in other ways than through setting them equal to other data-identified densities,
or in ways that deviate from them in a controlled way. This is the route taken by
Carpenter, Roger, and Kenward (2009), and discussed in detail in Carpenter and
Kenward (2013, Ch. 10).

An advantage of using MI is that imputations can be generated in a PMM
framework, with analysis conducted in the same or a different framework. For
example, the models reported in Table 7.13 are of a selection model type, but
imputations were obviously of a PMM signature.

Possible strategies for generating imputations, partially in line with Carpenter,
Roger, and Kenward (2009) are as follows:

® Jump to reference. For example, patients receiving active treatment might be
made to “jump” to the control group after dropout.

® After dropout in a given pattern (and perhaps in a given treatment group),
subjects might be made to shift with a certain amount, relative to the MAR-based
prediction. This amount in itself can be varied, from 0 (typically corresponding
to MAR), to a prespecified maximal amount.

® Likewise, they might be made to change slope with a certain amount.

Carpenter and Kenward (2009) describe such strategies in the following generic
terms:

1. Separately for each treatment arm, take all patients’ pre-deviation
data and---assuming MAR---fit a multivariate normal distribution
with unstructured mean (i.e., a separate mean for each of the 1 +p
baseline plus post-randomization observation times) and unstructured
variance-covariance matriz (i.e., a (14p)x (1+p) covariance matriz),

2. Separately for each treatment arm, draw a mean vector and variance-
covariance matriz from the posterior distribution.

8. For each patient who deviates before the end of the study, use the
draws from step 2 to build the joint distribution of their pre- and
post-deviation outcome data. Suggested options for constructing this
are given below.



EXAMPLE:

TABLE 7.14

Chapter 7 Analysis of Incomplete Data 375

4. For each patient who deviates before the end, use their joint dis-
tribution in step 3 to construct their conditional distribution of
post-deviation given pre-deviation outcome data. Sample their post-

deviation data from this conditional distribution, to create a “‘com-
pleted” data set.

5. Repeated steps 2--4 M times, resulting in M imputed data sets.

6. Fit the substantive model to each imputed data set, and combine the
resulting parameter estimates and standard errors using Rubin’s rules
for final inference.

For precision estimation, we might also revert to resampling methods, as proposed
by Lu (2014).

A special place is reserved for a so-called tipping point analysis. This can be
undertaken whenever a continuous deviation from MAR is possible. For example,
when in a given pattern for a given treatment group, subjects are systematically
shifted by a certain amount, this amount can be changed continuously (or in small
increments) until the point where significance of a key hypothesis test changes.
If this point is unrealistically far away, then confidence in the primary analysis
increases. Of course, there are a multitude of ways in which a given primary analysis
can be subjected to a tipping point analysis. Exactly how it is conducted will likely
depend on substantive considerations.

Age-related macular degeneration trial

To illustrate sensitivity analysis by way of MNAR adjustments in the multiple
imputation process, we apply a shift to missing values in the treated arm, with
magnitudes of 0, 10, 15, and 20, at 4, 12, 24, and 52 weeks, respectively. The
results of both GEE and GLMM, without and with this adjustment, are shown in
Table 7.14. We expect to see the same estimates for the standard (MAR) analyses

The Age-related Macular Degeneration Trial. Parameter estimates (standard errors) for GEE and
GLMM, comparing MAR versions with MNAR analyses based on shifts, identification using the
placebo group only, and NCMV.

Effect Par. MAR shift placebo NCMV
Generalized estimating equations

Int.4 f11 -0.82(0.20) -0.73(0.20) -0.81(0.20) -0.83(0.21)
Int.12 B21  -0.97(0.22) -0.71(0.19) -0.98(0.22) -1.06(0.21)
Int.24 Bs1  -1.07(0.23) -0.56(0.19) -1.05(0.22) -1.00(0.22)
Int.52 Ba1  -1.66(0.27) -0.82(0.20) -1.58(0.29) -1.59(0.27)
Trt.4 B2 0.17(0.29) 0.07(0.28)  0.17(0.28)  0.17(0.29)
Trt.12 B2 0.56(0.29)  0.29(0.27)  0.56(0.29) 0.67(0.28)
Trt.24 B3z 0.41(0.30) -0.10(0.27)  0.39(0.29) 0.34(0.29)
Trt.52 Bs2  0.41(0.35) -0.43(0.30)  0.32(0.35)  0.32(0.35)

(
(
(
(
(
(
(
Generalized linear mlxed models
Int.4 f11 -1.46(0.36) -1.32(0.36) -1.39(0.35
Int.12 B21 -1.75(0.38) -1.27(0.35) -1.67(0.37
(
(
(
(
(
(
(
(

( ) -1.42(0.35)
(0.38) ( ) ) -1.80(0.36)
Int.24 B3 -1.83(0.38) -1.01(0.34) -1.78(0.38) -1.70(0.38)
Int.52 By -271(0.45) -1.47(0.36) -2.62(0.46) -2.64(0.44)
Trt.4 Bz 0.32(0.48)  0.12(0.50)  0.25(0.48)  0.24(0.48)
Trt.12 By 0.99(0.49)  0.50(0.48)  0.91(0.48)  1.09(0.47)
Trt.24 B3 0.67(0.51) -0.19(0.48)  0.62(0.48)  0.53(0.49)
Trt.52 B 0.53(0.57) -0.74(0.51)  0.45(0.56)  0.45(0.55)
RLsd 7t  221(0.26) 228(0.25) 2.17(0.25)  2.16(0.24)

(1.14) (1.15) ) (1.05)

R.I var. 72 4.90(1.14 5.21(1.15 4.72(1.09 4.66(1.05
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PROGRAM 7.29

as obtained in Table 7.9. However, there are slight differences because the results in
Table 7.9 were based on the MCMC imputation method, whereas here FCS was
used. The reason is that the MNAR statement requires either MONOTONE or FCS.
Given that the data are slightly non-monotone, FCS is the obvious choice.

Turning to the difference between the MAR analyses and those after applying a
shift, we observe reasonably large changes, including a sign change for the treatment
effects at 24 and 52 weeks. Under MAR, there was only one marginally significant
treatment effect (at 12 weeks), even though it is in favor of placebo. After applying
the shift, nothing is nearly significant. It is noteworthy that a negative sign points
to an effect in favor of the active treatment. This is not surprising, because by
applying the shift, we progressively make the treatment more beneficial.

Two further MNAR-based analyses are conducted, both reported in Table 7.14. In
the first case, imputation takes place based on the placebo group only. In other words,
after dropout, the conditional distribution of the missing measurements given the
observed ones is based on only the control arm. The final analysis, NCMV is applied,
meaning that the distribution of a missing measurement given its predecessors
is based on the adjacent pattern that contains all of these measurements. This
imputation is done for each of the two treatment groups separately.

Unlike with the shift analysis, the SAS implementation for the latter two analyses
requires data to be monotonically missing. Therefore, two multiple imputation calls
are made. In the first one, the eight subjects with a non-monotone pattern are
monotonized, under the assumption of MAR. Ten imputations are generated. These
data sets are then used as input for one further MNAR imputation. The result is,
evidently, ten fully imputed data sets. Details about the SAS code are presented in
Section 7.11.3.

7.11.3 SAS and Sensitivity Analysis

The key statement to conduct sensitivity analyses of the type reported above is
the MNAR statement. It is important to note that the statement requires either
MONOTONE or FCS as imputation strategies. Hence, MCMC is not compatible
with this tool.

There are two main strategies to apply the MNAR statement. The first one is
that of adjustment, using the adjust option. It specifies a subset of the variables
present in the VAR statement to which a certain adjustment should be applied. It is
also possible to specify a subset of the observations to which the adjustment needs
to be applied. For example, we can apply an adjustment at certain measurement
occasions, for one of several treatment arms. An example is given in the following
program (Program 7.29), which is needed to generate the imputations that lead to
the results reported in Table 7.14.

Sensitivity analysis using PROC M, shift adjustment

proc mi data=m.armd13 seed=486048 simple out=m.armdl3asi
nimpute=10 round=0.1;

title ’Shift multiple imputation’;
class treat;
var lesion diff4 diffi12 diff24 diff52;
fcs reg;
mnar adjust (diff12 / shift=10 adjustobs=(treat=’2’));
mnar adjust (diff24 / shift=15 adjustobs=(treat=’2’));
mnar adjust (diff52 / shift=20 adjustobs=(treat=’2’));
by treat;

run;

Note that Program 7.29 replaced Program 7.18. The programs for the analysis
and inference steps remain exactly the same. The shift= adjustment is but one of



PROGRAM 7.30

PROGRAM 7.31

Output
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several options. For example, rather than an additive shift, a multiplicative scale
adjustment can be made using the scale= option.

The other main option is model. It can be used to specify for which variables
what subgroup of the observations is to be used. Subgroups can be defined in a
predefined way, using NCMV or CCMV. Alternatively, subgroups can be defined
by way of levels of certain variables. An example of the latter is Program 7.30.

Sensitivity analysis using PROC MI, subgroup adjustment

proc mi data=m.armd13 seed=486048 simple out=m.armd13as2 nimpute=10;
title ’Model multiple imputation’;

class treat;

var lesion diff4 diff12 diff24 diffb2;

fcs reg;

mnar model (diff4 / modelobs= (treat=’1’));

mnar model (diff12 / modelobs= (treat=’1’));

mnar model (diff24 / modelobs= (treat=’1’));

mnar model (diff52 / modelobs= (treat=’1’));

run;

The method is particularly useful, and popular, when this group is defined as a
control treatment group. Such a control-based imputation method is known as copy
reference. The website www.missingdata.org.uk contains a suite of SAS macros,
for various control-based imputation strategies, written by James Roger.

Note that NCMV and CCMYV is available only for monotone data, whereas the
third option is available with FCS as well.

Should we want to apply NCMV or CCMV, then we can first monotonize the
data using standard imputation, and then apply the desired identifying restrictions,
as in the following program:

Sensitivity analysis using PROC MI, NCMV

proc mi data=m.armd13 seed=486048 simple out=m.armd13as3 nimpute=10;
title ’Montone imputation’;

var lesion diff4 diffi12 diff24 diffb52;

mcmc impute=monotone;

by treat;

run;

proc mi data=m.armd13as3 seed=486048 simple out=m.armd13as4 nimpute=1;
title ’Model multiple imputation’;

var lesion diff4 diffl12 diff24 diffb52;

monotone reg;

mnar model (diff4 diff12 diff24 diff52 / modelobs=ncmv);

by treat;

run;

|
Observations Used for Imputation Models Under MNAR Assumption

Imputed

Variable Observations

diff4 Nonmissing lesion, diff4; Missing diffi12, ..., diffb2
diffi12 Nonmissing lesion, ..., diffl12; Missing diff24, diffb2
diff24 Nonmissing lesion, ..., diff24; Missing diffb2

diff52 Complete Cases
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In the first MI call, 10 imputations are generated. The output data set of
this call is used as input for the next one, where a single imputation is created.
Evidently, this effectively creates 10 x 1 = 10 imputations. As a general rule, when
multiple imputations are generated in a sequential fashion, the required number of
imputations M should be generated the first time; in every subsequent call, there
should then be a single imputation.

The patterns used in the imputation process (second call) are part of the printout:

7.12 Concluding Remarks

We have shown that analyzing incomplete (longitudinal) data, both of a Gaussian
as well as of a non-Gaussian nature, can easily be done under the relatively relaxed
assumption of missingness at random (MAR), using standard statistical software
tools. Likelihood-based methods include the linear mixed model (e.g., implemented in
the SAS procedure MIXED) and generalized linear mixed models (e.g., implemented
in the SAS procedures GLIMMIX and NLMIXED). This is termed direct likelihood
or ignorable likelihood. Under the same assumptions, ignorable Bayesian analyses
can be conducted (e.g., using the SAS procedure MCMC).

In addition, weighted generalized estimating equations can be used under MAR.
Its implementation is straightforward thanks to facilities of the SAS procedure GEE.

Finally, a versatile approach, valid under MAR, is to handle incompleteness by
way of multiple imputation, after which standard, complete-data analysis methods
can be used. SAS offers procedures MI and MIANALYZE to this effect.

All of this implies that traditionally popular but far more restricted modes of
analysis, including complete case (CC) analysis, last observation carried forward
(LOCF), or other simple imputation methods, ought to be abandoned, given the
highly restrictive assumptions on which they are based.

Of course, general missingness not at random can never be entirely excluded,
and we should therefore ideally supplement an MAR-based analysis with a suitable
chosen set of sensitivity analyses. This area is still in full development, but thanks
to the MNAR statement in PROC MI, an array of sensitivity analysis tools are now
also provided within the context of standard SAS procedures.
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i This book is compatible with SAS University Edition. If you are using SAS University Edition, then
begin here: https://support.sas.com/ue-data.

Output and Graphics

The second edition takes full advantage of new graphics procedures and features of SAS software,
including PROC SGPLOT, PROC SGPANEL and ODS graphics options.

We Want to Hear from You

SAS Press books are written by SAS Users for SAS Users. We welcome your participation in their
development and your feedback on SAS Press books that you are using. Please visit sas.com/books to do
the following:

Sign up to review a book

Recommend a topic

Request authoring information

Provide feedback on a book

Do you have questions about a SAS Press book that you are reading? Contact the author through
saspress@sas.com or https://support.sas.com/author_feedback.

SAS has many resources to help you find answers and expand your knowledge. If you need additional help,
see our list of resources: sas.com/books.
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